[1] DEPREN O, TOPALLAR M, ANARIM E, et al. An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks[J]. Expert Systems with Applications, 2005, 29(4):713-722. [2] ZARPELO B B, MIANI R S, KAWAKANI C T, et al. A survey of intrusion detection in Internet of Things[J]. Journal of Network and Computer Applications, 2017, 84(C):25-37. [3] ILGUN K, KEMMERER R A, PORRAS P A. State transition analysis:a rule-based intrusion detection approach[J].IEEE Transactions on Software Engineering, 1995, 21(3):181-199. [4] SAMRIN R, VASUMATHI D. Review on anomaly based network intrusion detection system[C]//Proceedings of the International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques. Washington D. C., USA:IEEE Press, 2017:141-147. [5] 王红,陈功平.基于最小生成树改进K-means聚类的网络入侵检测技术[J].重庆科技学院学报(自然科学版), 2022, 24(6):38-41. WANG H, CHEN G P. Network intrusion detection technology based on minimum spanning tree improved K-means clustering[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2022, 24(6):38-41.(in Chinese) [6] 杜旭升,于炯,叶乐乐,等.基于图上随机游走的离群点检测算法[J].计算机应用, 2020, 40(5):1322-1328. DU X S, YU J, YE L L, et al. Outlier detection algorithm based on graph random walk[J]. Journal of Computer Applications, 2020, 40(5):1322-1328.(in Chinese) [7] 辛壮,万良,李均涛.改进的聚类算法在网络异常行为检测中的应用[J].计算机技术与发展, 2019, 29(3):111-116. XIN Z, WAN L, LI J T. Application of improved clustering algorithm in network abnormal behavior detection[J]. Computer Technology and Development, 2019, 29(3):111-116.(in Chinese) [8] ZHOU C, PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]//Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2017:665-674. [9] 周杭,蒋瑜.基于高对比度子空间的改进孤立森林方法[J].计算机应用研究, 2023, 40(2):388-393. ZHOU H, JIANG Y. Improved isolation forest method based on high contrast subspace[J]. Application Research of Computers, 2023, 40(2):388-393.(in Chinese) [10] ALANAZI H O, NOOR R M, ZAIDAN B B, et al. Intrusion detection system:overview[EB/OL].[2023-06-05]. https://arxiv.org/ftp/arxiv/papers/1002/1002.4047.pdf. [11] WANG Y S, YAO H X, ZHAO S C. Auto-encoder based dimensionality reduction[J]. Neurocomputing, 2016, 184(C):232-242. [12] 陈国成,张建,菅光雷.基于改进叠加自动编码器轴承智能故障诊断方法[J].噪声与振动控制, 2022, 42(1):156-161. CHEN G C, ZHANG J, JIAN G L. Intelligent fault diagnosis of bearings based on improved stacked autoencoders[J]. Noise and Vibration Control, 2022, 42(1):156-161.(in Chinese) [13] BLUMENSATH T, DAVIES M E. Iterative thresholding for sparse approximations[J]. Journal of Fourier Analysis and Applications, 2008, 14(5):629-654. [14] XU D, WANG Y J, MENG Y L, et al. An improved data anomaly detection method based on isolation forest[C]//Proceedings of the 10th International Symposium on Computational Intelligence and Design. Washington D. C., USA:IEEE Press, 2017:287-291. [15] BUSCHJÄGER S, HONYSZ P J, MORIK K. Randomized outlier detection with trees[J]. International Journal of Data Science and Analytics, 2022, 13(2):91-104. [16] HEYDARIAN M, DOYLE T E, SAMAVI R. MLCM:multi-label confusion matrix[J]. IEEE Access, 1932, 10:19083-19095. [17] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDDCUP99 data set[C]//Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications. Washington D. C., USA:IEEE Press, 2009:1-6. [18] MOUSTAFA N, SLAY J. UNSW-NB15:a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of the Military Communications and Information Systems Conference. Washington D. C., USA:IEEE Press, 2015:1-6. [19] SINAGA K P, YANG M S. Unsupervised K-means clustering algorithm[J]. IEEE Access, 2020, 8:80716-80727. [20] BAUM C F, SCHAFFER M E, STILLMAN S. Instrumental variables and GMM:estimation and testing[J]. The Stata Journal:Promoting Communications on Statistics and Stata, 2003, 3(1):1-31. [21] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF:identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York, USA:ACM Press, 2000:93-104. [22] MAYURANATHAN M, MURUGAN M, DHANAKOTI V. RETRACTED ARTICLE:best features based intrusion detection system by RBM model for detecting DDoS in cloud environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(3):3609-3619. [23] RAWAT S, SRINIVASAN A, RAVI V, et al. Intrusion detection systems using classical machine learning techniques vs integrated unsupervised feature learning and deep neural network[J]. Internet Technology Letters, 2022, 5(1):1-10. [24] LIU D S, ZHEN H, KONG D Q, et al. Sensors anomaly detection of industrial Internet of Things based on isolated forest algorithm and data compression[J]. Scientific Programming, 2021, 2021:6699313. [25] PAPADIMITRIOU C H. Computational complexity[M]//Encyclopedia of computer science. 2003:260-265. |