计算机工程

• 安全技术 • 上一篇    下一篇

一种基于特征点的三维网格盲水印算法

齐向明,史双宇,杨晓陶   

  1. (辽宁工程技术大学软件学院,辽宁葫芦岛125105)
  • 收稿日期:2013-10-22 出版日期:2014-09-15 发布日期:2014-09-12
  • 作者简介:齐向明(1966 - ),男,副教授,主研方向:信息安全,图形图像处理;史双宇(通讯作者)、杨晓陶,硕士研究生。

A Three-dimensional Grid Blind Watermarking Algorithm Based on Feature Point

QI Xiang-ming,SHI Shuang-yu,YANG Xiao-tao   

  1. (Software College,Liaoning Technical University,Huludao 125105,China)
  • Received:2013-10-22 Online:2014-09-15 Published:2014-09-12

摘要: 针对三维网格水印空域算法无法兼顾嵌入量与透明性,且水印盲检测过程繁琐的问题,提出一种基于特征点的盲水印算法。选取三维模型最远两点为全局特征点建立全局坐标系,根据仿射不变性原理将原始载体仿射到一个固定的球型空间,以增强对多种几何攻击的抵抗能力。根据载体点密集程度将其等分成若干个局部空间,以局部空间中离质心最远点为局部特征顶点建立局部几何坐标系,从而增强算法的透明性。利用顶点在坐标系的投影角度来存储水印索引,实现盲水印。实验结果表明,该算法能有效抵抗旋转、缩放、噪声等攻击,具有强鲁棒性和较好的不可感知性,同时兼具盲水印检测优势。

关键词: 特征点, 三维网格, 数字水印, 仿射不变性, 鲁棒性, 透明性

Abstract: The general three-dimensional grid watermarking algorithm can not take into account the embedding capacity and transparency,and watermark blind detection is not easy to achieve. Aiming at these problems,this paper presents a blind watermarking algorithm based on feature points. It uses a global three-dimensional model to find the farthest points of global feature points. According to the affine invariance principle,the original carrier is affined to a fixed dome space of the global coordinate system to enhance the robustness. According to the point-intensive,it divides the carrier into some local space. In order to enhance the transparency of the algorithm,it makes the farthest point from the centroid in the local space as the local feature vertexes to establish local geometric coordinates. It achieves blind watermark by using the projection of the vertex angle defined in the coordinate system to store the watermark indexes. Experimental result shows that the proposed algorithm not only has good robustness and imperceptibility to such as geometric transformation,simplification,random noise and shear attacks,but also has blind watermark detection advantage.

Key words: feature point, three-dimensional grid, digital watermarking, affine invariance, robustness, transparency

中图分类号: