[1] 代磊超, 冯林, 杨玉亭, 等.一种鲁棒性的少样本学习方法[J].小型微型计算机系统, 2021, 42(2):340-347. DAI L C, FENG L, YANG Y T, et al.Robust few-shot learning method[J].Journal of Chinese Computer Systems, 2021, 42(2):340-347.(in Chinese) [2] RAVI S, LAROCHELLE H.Optimization as a model for few-shot learning[EB/OL].[2021-10-05].https://openreview.net/pdf?id=rJY0-Kcll. [3] KINGMA D, BA J.Adam:a method for stochastic optimization[EB/OL].[2021-10-05].https://arxiv.org/pdf/1412.6980.pdf. [4] DUCHI J, HAZAN E, SINGER Y.Adaptive subgradient methods for online learning and stochastic optimization[EB/OL].[2021-10-05].https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf. [5] 赵凯琳, 靳小龙, 王元卓.小样本学习研究综述[J].软件学报, 2021, 32(2):349-369. ZHAO K L, JIN X L, WANG Y Z.Survey on few-shot learning[J].Journal of Software, 2021, 32(2):349-369.(in Chinese) [6] HOWARD J, RUDER S.Universal language model fine-tuning for text classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2018:328-339. [7] GAO R, HOU X S, QIN J, et al.Zero-VAE-GAN:generating unseen features for generalized and transductive zero-shot learning[J].IEEE Transactions on Image Processing, 2020, 29:3665-3680. [8] LIU L L, ZHANG H J, XU X F, et al.Collocating clothes with generative adversarial networks cosupervised by categories and attributes:a multidiscriminator framework[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9):3540-3554. [9] WEI Y Y, ZHANG Z, WANG Y, et al.DerainCycleGAN:rain attentive CycleGAN for single image deraining and rainmaking[J].IEEE Transactions on Image Processing, 2021, 30:4788-4801. [10] WANG Y X, HEBERT M.Learning to learn:model regression networks for easy small sample learning[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:616-634. [11] 汪荣贵, 汤明空, 杨娟, 等.语义匹配网络的小样本学习[J].计算机工程, 2021, 47(5):244-250, 259. WANG R G, TANG M K, YANG J, et al.Semantic matching network for few-shot learning[J].Computer Engineering, 2021, 47(5):244-250, 259.(in Chinese) [12] GIDARIS S, KOMODAKIS N.Generating classification weights with GNN denoising autoencoders for few-shot learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:21-30. [13] THRUN S, PRATT L.Learning to learn:introduction and overview[M].Berlin, Germany:Springer, 1998. [14] FINN C, ABBEEL P, LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2017:1126-1135. [15] GOLDBLUM M, FOWL L, GOLDSTEIN T.Adversarially robust few-shot learning:a meta-learning approach[J].Advances in Neural Information Processing Systems, 2020, 33:12-36. [16] SHIN H, KIM D, KWON Y, et al.Illusion and dazzle:adversarial optical channel exploits against lidars for automotive applications[C]//Proceedings of International Conference on Cryptographic Hardware and Embedded Systems.Berlin, Germany:Springer, 2017:445-467. [17] SHAN S, WENGER E, ZHANG J, et al.Fawkes:protecting privacy against unauthorized deep learning models[EB/OL].[2021-10-05].https://arxiv.org/pdf/2002.08327.pdf. [18] YIN C, TANG J, XU Z, et al.Adversarial meta-learning[EB/OL].[2021-10-05].https://arxiv.org/pdf/1806.03316.pdf. [19] GOODFELLOW I J, SHLENS J, SZEGEDY C.Explaining and harnessing adversarial examples[EB/OL].[2021-10-05].https://arxiv.org/pdf/1412.6572.pdf. [20] MADRY A, MAKELOV A, SCHMIDT L, et al.Towards deep learning models resistant to adversarial attacks[EB/OL].[2021-10-05].https://arxiv.org/abs/1706.06083. [21] WANG R, XU K, LIU S, et al.On fast adversarial robustness adaptation in model-agnostic meta-learning[EB/OL].[2021-10-05].https://arxiv.org/pdf/2102.10454v1.pdf. [22] REN M, TRIANTAFILLOU E, RAVI S, et al.Meta-learning for semi-supervised few-shot classification[EB/OL].[2021-10-05].https://arxiv.org/pdf/1803.00676.pdf. [23] HUANG S X, ZENG X P, WU S, et al.Behavior regularized prototypical networks for semi-supervised few-shot image classification[J].Pattern Recognition, 2021, 112:107765. [24] MIYATO T, MAEDA S I, KOYAMA M, et al.Virtual adversarial training:a regularization method for supervised and semi-supervised learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8):1979-1993. [25] JAMAL M A, QI G J.Task agnostic meta-learning for few-shot learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:11719-11727. |