1 |
WANG X G, YANG W, WEINREB J, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Scientific Reports, 2017, 7, 1- 8.
doi: 10.1038/s41598-016-0028-x
|
2 |
DENG Y, BAO F, KONG Y Y, et al. Deep direct reinforcement learning for financial signal representation and trading. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (3): 653- 664.
doi: 10.1109/TNNLS.2016.2522401
|
3 |
MASI I, WU Y, HASSNER T, et al. Deep face recognition: a survey[C]//Proceedings of the 31st SIBGRAPI Conference on Graphics, Patterns and Images. Washington D. C., USA: IEEE Press, 2018: 471-478.
|
4 |
HE Y, ZHAO N, YIN H X. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach. IEEE Transactions on Vehicular Technology, 2018, 67 (1): 44- 55.
doi: 10.1109/TVT.2017.2760281
|
5 |
张颖君, 陈恺, 周赓, 等. 神经网络水印技术研究进展. 计算机研究与发展, 2021, 58 (5): 964- 976.
doi: 10.7544/issn1000-1239.2021.20200978
|
|
ZHANG Y J, CHEN K, ZHOU G, et al. Research progress of neural networks watermarking technology. Journal of Computer Research and Development, 2021, 58 (5): 964- 976.
doi: 10.7544/issn1000-1239.2021.20200978
|
6 |
BOENISCH F. A systematic review on model watermarking for neural networks. Frontiers in Big Data, 2021, 4, 729663.
doi: 10.3389/fdata.2021.729663
|
7 |
UCHIDA Y, NAGAI Y, SAKAZAWA S, et al. Embedding watermarks into deep neural networks[C]//Proceedings of 2017 ACM International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2017: 269-277.
|
8 |
ROUHANI B D, CHEN H L, KOUSHANFAR F. DeepSigns: an end-to-end watermarking framework for ownership protection of deep neural networks[C]//Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems. New York, USA: ACM Press, 2019: 485-497.
|
9 |
WANG T H, KERSCHBAUM F. RIGA: covert and robust white-box watermarking of deep neural networks[C]//Proceedings of 2021 Web Conference. New York, USA: ACM Press, 2021: 993-1004.
|
10 |
ADI Y, BAUM C, CISSE M, et al. Turning your weakness into a strength: watermarking deep neural networks by backdooring[C]//Proceedings of the 27th USENIX Conference on Security Symposium. New York, USA: ACM Press, 2018: 1615-1631.
|
11 |
ZHANG J L, GU Z S, JANG J, et al. Protecting intellectual property of deep neural networks with watermarking[C]//Proceedings of 2018 Asia Conference on Computer and Communications Security. New York, USA: ACM Press, 2018: 159-172.
|
12 |
CHEN H L, ROUHANI B D, KOUSHANFAR F. Blackmarks: blackbox multibit watermarking for deep neural networks[EB/OL]. [2023-01-02]. https://arxiv.org/abs/1904.00344.
|
13 |
NAMBA R, SAKUMA J. Robust watermarking of neural network with exponential weighting[C]//Proceedings of 2019 ACM Asia Conference on Computer and Communications Security. New York, USA: ACM Press, 2019: 228-240.
|
14 |
LE MERRER E, PÉREZ P, TRÉDAN G. Adversarial frontier stitching for remote neural network watermarking. Neural Computing and Applications, 2020, 32 (13): 9233- 9244.
doi: 10.1007/s00521-019-04434-z
|
15 |
姜妍, 张立国. 面向深度学习模型的对抗攻击与防御方法综述. 计算机工程, 2021, 47 (1): 1- 11.
doi: 10.3969/j.issn.1007-130X.2021.01.001
|
|
JIANG Y, ZHANG L G. Survey of adversarial attacks and defense methods for deep learning model. Computer Engineering, 2021, 47 (1): 1- 11.
doi: 10.3969/j.issn.1007-130X.2021.01.001
|
16 |
CHEN X Y, WANG W X, BENDER C, et al. REFIT: a unified watermark removal framework for deep learning systems with limited data[C]//Proceedings of 2021 ACM Asia Conference on Computer and Communications Security. New York, USA: ACM Press, 2021: 321-335.
|
17 |
HAN S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 1135-1143.
|
18 |
ZHANG Z Y, LYU L J, WANG W Q, et al. How to inject backdoors with better consistency: logit anchoring on clean data[EB/OL]. [2023-01-02]. https://arxiv.org/abs/2109.01300.
|
19 |
JIA H R, CHOQUETTE-CHOO C A, CHANDRASEKARAN V, et al. Entangled watermarks as a defense against model extraction[C]//Proceedings of the 30th USENIX Security Symposium. [S. l.]: USENIX, 2021: 1937-1954.
|
20 |
FROSST N, PAPERNOT N, HINTON G. Analyzing and improving representations with the soft nearest neighbor loss[C]//Proceedings of International Conference on Machine Learning. [S. l.]: PMLR, 2019: 2012-2020.
|
21 |
KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images. Handbook of Systemic Autoimmune Diseases, 2009, 1 (4): 1- 58.
|
22 |
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, 2012, 32, 323- 332.
doi: 10.1016/j.neunet.2012.02.016
|
23 |
LI F F, FERGUS R, PERONA P. One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (4): 594- 611.
doi: 10.1109/TPAMI.2006.79
|
24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
25 |
GARG S, KUMAR A, GOEL V, et al. Can adversarial weight perturbations inject neural backdoors?[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2020: 2029-2032.
|
26 |
LIU K, DOLAN-GAVITT B, GARG S. Fine-pruning: defending against backdooring attacks on deep neural networks[C]//Proceedings of International Symposium on Research in Attacks, Intrusions, and Defenses. Berlin, Germany: Springer, 2018: 273-294.
|
27 |
王朕, 李豪, 严冬梅, 等. 基于改进YOLOv5的路面病害检测模型. 计算机工程, 2023, 49 (2): 15- 23.
URL
|
|
WANG Z, LI H, YAN D M, et al. Pavement disease detection model based on improved YOLOv5. Computer Engineering, 2023, 49 (2): 15- 23.
URL
|