[1] MCMAHAN H B, MOORE E, RAMAGE D, et al.Communication-efficient learning of deep networks from decentralized data[EB/OL].[2021-05-13].https://arxiv.org/abs/1602.05629. [2] 杨文琦, 章阳, 聂江天, 等.基于联邦学习的无线网络节点能量与信息管理策略[J].计算机工程, 2022, 48(1):188-196, 203. YANG W Q, ZHANG Y, NIE J T, et al.Energy and information management strategy based on federated learning for wireless network nodes[J].Computer Engineering, 2022, 48(1):188-196, 203.(in Chinese) [3] 温亚兰, 陈美娟.融合联邦学习与区块链的医疗数据共享方案[J].计算机工程, 2022, 48(5):145-153, 161. WEN Y L, CHEN M J.Medical data sharing scheme combined with federal learning and blockchain[J].Computer Engineering, 2022, 48(5):145-153, 161.(in Chinese) [4] 赵健, 张鑫褆, 李佳明, 等.群体智能2.0研究综述[J].计算机工程, 2019, 45(12):1-7. ZHAO J, ZHANG X T, LI J M, et al.Research review of crowd intelligence 2.0[J].Computer Engineering, 2019, 45(12):1-7.(in Chinese) [5] LIU Y, YU J J Q, KANG J W, et al.Privacy-preserving traffic flow prediction:a federated learning approach[J].IEEE Internet of Things Journal, 2020, 7(8):7751-7763. [6] 彭红艳, 凌娇, 覃少华, 等.面向边缘计算的属性加密方案[J].计算机工程, 2021, 47(1):37-43. PENG H Y, LING J, QIN S H, et al.Attribute-based encryption scheme for edge computing[J].Computer Engineering, 2021, 47(1):37-43.(in Chinese) [7] LIU Y, YUAN X L, ZHAO R H, et al.RC-SSFL:towards robust and communication-efficient semi-supervised federated learning system[EB/OL].[2021-05-31].https://arxiv.org/abs/2012.04432. [8] ITAHARA S, NISHIO T, KODA Y, et al.Distillation-based semi-supervised federated learning for communication-efficient collaborative training with non-IID private data[EB/OL].[2021-05-31].https://arxiv.org/abs/2008. 06180v2. [9] JIN Y L, WEI X G, LIU Y, et al.Towards utilizing unlabeled data in federated learning:a survey and prospective[EB/OL].[2021-05-31].https://arxiv.org/abs/2002.11545?context=cs. [10] JEONG W, YOON J, YANG E, et al.Federated semi-supervised learning with inter-client consistency & disjoint learning[EB/OL].[2021-05-31].https://arxiv.org/abs/2006.12097. [11] ZHU X J, GOLDBERG A B.Introduction to semi-supervised learning[J].Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009, 3(1):105-130. [12] LONG Z W, CHE L W, WANG Y Q, et al.FedSemi:an adaptive federated semi-supervised learning framework[EB/OL].[2021-05-31].https://arxiv.org/abs/2012.03292. [13] PARK S, PARK J K, SHIN S J, et al.Adversarial dropout for supervised and semi-supervised learning[EB/OL].[2021-05-31].https://arxiv.org/abs/1707.03631. [14] LI X X, JIANG M R, ZHANG X F, et al.FedBN:federated learning on non-IID features via local batch normalization[EB/OL].[2021-05-31].https://arxiv.org/abs/2102. 07623. [15] LEE D H.Pseudo-label:the simple and efficient semi-supervised learning method for deep neural networks[EB/OL].[2021-05-31].http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.664.3543&rep=rep1&type=pdf. [16] LAINE S, AILA T.Temporal ensembling for semi-supervised learning[EB/OL].[2021-05-31].https://arxiv.org/abs/1610.02242. [17] TARVAINEN A, VALPOLA H.Mean teachers are better role models:weight-averaged consistency targets improve semi-supervised deep learning results[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:1195-1204. [18] ZHANG Z M, YANG Y Q, YAO Z W, et al.Improving semi-supervised federated learning by reducing the gradient diversity of models[C]//Proceedings of 2021 IEEE International Conference on Big Data.Washington D.C., USA:IEEE Press, 2021:1214-1225. [19] XIE Q Z, DAI Z H, HOVY E, et al.Unsupervised data augmentation for consistency training[EB/OL].[2021-05-31].https://arxiv.org/abs/1904.12848. [20] LI Q B, DIAO Y Q, CHEN Q, et al.Federated learning on non-IID data silos:an experimental study[EB/OL].[2021-05-31].https://arxiv.org/abs/2102.02079. [21] LI T, SAHU A K, ZAHEER M, et al.Federated optimization in heterogeneous networks[EB/OL].[2021-05-31].https://arxiv.org/abs/1812.06127. [22] WANG J Y, LIU Q H, LIANG H, et al.Tackling the objective inconsistency problem in heterogeneous federated optimization[EB/OL].[2021-05-31].https://arxiv.org/abs/2007.07481v1. [23] BERTHELOT D, CARLINI N, GOODFELLOW I, et al.MixMatch:a holistic approach to semi-supervised learning[EB/OL].[2021-05-31].https://arxiv.org/abs/1905. 02249. [24] SOHN K, BERTHELOT D, LI C L, et al.FixMatch:simplifying semi-supervised learning with consistency and confidence[EB/OL].[2021-05-31].https://arxiv.org/abs/2001.07685. [25] YUROCHKIN M, AGARWAL M, GHOSH S, et al.Bayesian nonparametric federated learning of neural networks[EB/OL].[2021-05-31].https://arxiv.org/abs/1905.12022. [26] HSU T M H, QI H, BROWN M.Measuring the effects of non-identical data distribution for federated visual classification[EB/OL].[2021-05-31].https://arxiv.org/abs/1909.06335v1. [27] 张曼, 闫飞, 阎高伟, 等.基于狄利克雷问题的路网控制子区动态划分[J].计算机工程, 2020, 46(12):21-26, 35. ZHANG M, YAN F, YAN G W, et al.Dynamic partition of control sub-regions in road network based on Dirichlet problem[J].Computer Engineering, 2020, 46(12):21-26, 35.(in Chinese) [28] LIU Y, YUAN X L, XIONG Z H, et al.Federated learning for 6G communications:challenges, methods, and future directions[J].China Communications, 2020(8):105-118. |