计算机工程

• 安全技术 • 上一篇    下一篇

非负矩阵分解在免疫入侵检测中的优化和应用

张凤斌,葛海洋,杨泽   

  1. (哈尔滨理工大学计算机科学与技术学院,哈尔滨 150080)
  • 收稿日期:2015-03-12 出版日期:2016-05-15 发布日期:2016-05-13
  • 作者简介:张凤斌(1965-),男,教授、博士生导师,主研方向为网络与信息安全、免疫入侵检测;葛海洋、杨泽,硕士研究生。
  • 基金项目:
    国家自然科学基金资助项目“免疫动态自适应机制研究”(61172168)。

Optimization and Application of Non-negative Matrix Factorization in Immune Intrusion Detection

ZHANG Fengbin,GE Haiyang,YANG Ze   

  1. (College of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
  • Received:2015-03-12 Online:2016-05-15 Published:2016-05-13

摘要: 针对免疫入侵检测数据处理速度慢以及检测实时性差的问题,提出Bregman非负矩阵分解算法,采用Bregman迭代方式改进传统非负矩阵分解过程,优化矩阵迭代过程,利用矩阵本地化方法分解矩阵,增加矩阵的约束,保留检测数据内部结构并且加快数据的处理速度。在KDD CUP 1999数据集上的仿真结果表明,该算法有效提高了入侵检测速度,增强了免疫入侵检测的时效性。

关键词: 免疫入侵检测, 非负矩阵分解, Bregman算法, 迭代, 矩阵本地化

Abstract: To deal with the problem of slow data processing speed and poor timeliness of immune intrusion detection,non-negative matrix factorization by Bregman iteration is proposed.It improves the traditional method,changes matrix iteration process,and uses matrix location to realize the decomposition conditions and its constraint,better retention of the internal structure of the data and acceleration of the processing.Experimental results in KDD CUP 1999 datasets show that the approach can improve the speed of intrusion detection and enhance the timeliness of immune intrusion detection.

Key words: immune intrusion detection, Non-negative Matrix Factorization(NMF), Bregman algorithm, iteration;matrix localization

中图分类号: