[1] |
KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
|
[2] |
LECUN Y,DENKER J S,SOLLA S A.Optimal single-class classification strategies[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2007:598-605.
|
[3] |
HASSIBI B,STORK D G.Second order derivatives for network pruning:optimal brain surgeon[C]//Proceedings of the 2nd order derivatives for network pruning:optimal brain surgeon.Berlin,Germany:Springer,1993:164-171.
|
[4] |
HAN S,POOL J,TRAN J,et al.Learning both weights and connections for efficient neural networks[EB/OL].[2020-02-13].https://arxiv.org/abs/1506.02626.
|
[5] |
HAN S,MAO H,DALLY W J.Deep compression:compressing deep neural networks with pruning,trained quantization and huffman coding[EB/OL].[2020-02-13].https://arxiv.org/abs/1510.00149.
|
[6] |
CHOI Y,ELKHAMY M,LEE J,et al.Towards the limit of network quantization[C]//Proceedings of International Conference on Learning Representations.Sydney,Australia:[s.n.],2017:1-8.
|
[7] |
ZHANG Xiangyu,ZOU Jianhua,MING Xiang,et al.Efficient and accurate approximations of nonlinear convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Berlin,Germany:Springer,2015:1984-1992.
|
[8] |
ZHANG Xiangyu,ZHOU Xinyu,LIN Mengxiao,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Berlin,Germany:Springer,2018:6848-6856.
|
[9] |
HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[EB/OL].[2020-02-13].https://arxiv.org/abs/1503.02531.
|
[10] |
DONG Xuanyi,YANG Yi.Network pruning via transformable architecture search[C]//Proceedings of NIPS'19.Vancouver,Canada:[s.n.],2019:759-770.
|
[11] |
LI H,KADAV A,DURDANOVIC I,et al.Pruning filters for efficient ConvNets[C]//Proceedings of International Conference on Learning Representation.Toulon,France:[s.n.],2016:1-10.
|
[12] |
YANG Minjie,LIANG Yaling,DU Minghui.YOLO pruning algorithm based on parameter subspace and scaling factor[J/OL].Computer Engineering:1-10[2020-02-13].https://doi.org/10.19678/j.issn.1000-3428.0056932.(in Chinese)杨民杰,梁亚玲,杜明辉.基于参数子空间和缩放因子的YOLO剪枝算法[J/OL].计算机工程:1-10[2020-02-13].https://doi.org/10.19678/j.issn.1000-3428.0056932.
|
[13] |
BOYD S,VANDENBERGHE L.Convex optimization[M].Cambridge,UK:Cambridge University Press,2004.
|
[14] |
DONG Z,YAO Z,GHOLAMI A,et al.HAWQ:hessian aware quantization of neural networks with mixed-precision[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Berlin,Germany:Springer,2019:293-302.
|
[15] |
DONG X,CHEN S,PAN S.Learning to prune deep neural networks via layer-wise optimal brain surgeon[EB/OL].[2020-02-13].https://arxiv.org/abs/1705.07565v1.
|
[16] |
BOOTH T E.Power iteration method for the several largest eigenvalues and eigenfunctions[J].Nuclear Science and Engineering,2006,154(1):48-62.
|
[17] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Berlin,Germany:Springer,2016:770-778.
|
[18] |
SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-02-13].https://arxiv.org/abs/1409.1556.
|
[19] |
KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[D].Toronto,Canada:University of Toronto,2009.
|
[20] |
WANG Peisong.Acceleration and compression of deep neural networks[D].Beijing:University of Chinese Academy of Sciences,2018.(in Chinese)王培松.深度神经网络加速与压缩方法研究[D].北京:中国科学院大学,2018.
|
[21] |
GUO Yiwen,YAO Anbang,CHEN Yurong.Dynamic network surgery for efficient DNNs[C]//Proceedings of Advances in Neural Information Processing Systems.Barcelona,Spain:[s.n.],2016:1379-1387.
|
[22] |
LUO Jianhao,WU Jianxin,LIN Weiyao.ThiNet:a filter level pruning method for deep neural network compression[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:5068-5076.
|
[23] |
DONG Xuanyi,HUANG Junshi,YANG Yi,et al.More is less:a more complicated network with less inference complexity[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:1895-1903.
|
[24] |
YANG He,KANG Guoliang,DONG Xuanyi,et al.Soft filter pruning for accelerating deep convolutional neural networks[EB/OL].[2020-02-13].https://arxiv.org/abs/1808.06866.
|
[25] |
LIU Zhuang,SUN Mingjie,ZHOU Tinghui,et al.Rethinking the value of network pruning[EB/OL].[2020-02-13].https://arxiv.org/abs/1810.05270.
|
[26] |
HE Yihui,LIN Ji,LIU Zhijian,et al.AMC:AutoML for model compression and acceleration on mobile devices[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:815-832.
|
[27] |
PASZKE A,GROSS S,MASSA F,et al.PyTorch:an imperative style,high-performance deep learning library[EB/OL].[2020-02-13].https://arxiv.org/abs/1912.01703?context=cs.LG.
|