[1] VAPNIK V N.The nature of statistical learning theory[M].New York, USA:Springer, 1995. [2] VAPNIK V N.Statistical learning theory[M].New York, USA:Wiley, 1998. [3] 王海, 翁晨傲, 李克, 等.一种面向基站扇区方向角估计的改进SVM算法[J].计算机工程, 2021, 47(4):120-126. WANG H, WENG C N, LI K, et al.An improved SVM algorithm for azimuth estimation of base station sector[J].Computer Engineering, 2021, 47(4):120-126.(in Chinese) [4] 鲁淑霞, 蔡莲香, 张罗幻.基于动量加速零阶减小方差的鲁棒支持向量机[J].计算机工程, 2020, 46(12):88-95, 104. LU S X, CAI L X, ZHANG L H.Robust support vector machine based on momentum acceleration zero-order variance reduction[J].Computer Engineering, 2020, 46(12):88-95, 104.(in Chinese) [5] KIM S T, HAN I G, LEE C Y, et al.A development of unknown intrusion detection system with SVM[J].Convergence Security Journal, 2007, 7(4):23-28. [6] CHEN Y, DING S H, HU G L, et al.Facial beautification method based on age evolution[J].Computer Aided Drafting, Design and Manufacturing, 2013, 23(4):7-12. [7] BEN ABID F, ZGARNI S, BRAHAM A.Distinct bearing faults detection in induction motor by a hybrid optimized SWPT and aiNet-DAG SVM[J].IEEE Transactions on Energy Conversion, 2018, 33(4):1692-1699. [8] 罗彬珅, 刘利民, 董健, 等.基于SAE-GA-SVM模型的雷达新型干扰识别[J].计算机工程, 2020, 46(6):281-287. LUO B S, LIU L M, DONG J, et al.Radar new jamming identification based on SAE-GA-SVM model[J].Computer Engineering, 2020, 46(6):281-287.(in Chinese) [9] GU B J, FANG J W, PAN F, et al.Fast clustering-based weighted twin support vector regression[J].Soft Computing, 2020, 24(8):6101-6117. [10] KHEMCHANDANI J R, CHANDRA S.Twin support vector machines for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5):905-910. [11] CHEN X, YANG J, YE Q.Recursive projection twin support vector machine via within-class variance minimization[J].Pattern Recognition, 2011, 44(10/11):2643-2655. [12] PENG X J.TSVR:an efficient twin support vector machine for regression[J].Neural Networks, 2010, 23(3):365-372. [13] CHEN X B, YANG J, LIANG J, et al.Smooth twin support vector regression[J].Neural Computing and Applications, 2012, 21(3):505-513. [14] PENG X J, CHEN D.PTSVR:regression models via projection twin support vector machine[J].Information Sciences, 2018, 435:1-14. [15] LIU F T, TING K M, ZHOU Z H.Isolation forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2009:413-422. [16] LIU F T, TING K M, ZHOU Z H.Isolation-based anomaly detection[J].ACM Transactions on Knowledge Discovery from Data, 2012, 6(1):1-39. [17] FENG W, SHEN G L, XU B Y, et al.Isolation forest-based least squares twin margin distribution support vector regression[J].International Journal of Innovative Computing, Information and Control, 2021, 17(2):565-579. [18] DING S F, HUANG H J, XU X Z, et al.Polynomial smooth twin support vector machines[J].Applied Mathematics & Information Sciences, 2014, 8(4):2063-2071. [19] BARLOW J L.Matrix analysis[J].Computing Reviews, 2013, 54(8):462-463. [20] WANG L D, GAO C, ZHAO N N, et al.A projection wavelet weighted twin support vector regression and its primal solution[J].Applied Intelligence, 2019, 49(8):3061-3081. [21] BI J B, BENNETT K P.A geometric approach to support vector regression[J].Neurocomputing, 2003, 55(1/2):79-108. [22] TANVEER M, SHUBHAM K.A regularization on Lagrangian twin support vector regression[J].International Journal of Machine Learning and Cybernetics, 2017, 8(3):807-821. [23] LÓPEZ J, MALDONADO S.Robust twin support vector regression via second-order cone programming[J].Knowledge-Based Systems, 2018, 152:83-93. [24] GU B J, SHEN G L, PAN F, et al.Least squares twin projection support vector regression[J].International Journal of Innovative Computing Information and Control, 2019, 15(6):2275-2288. |