1 |
CORTES C, VAPNIK V. Support-vector networks. Machine Learning, 1995, 20(3): 273- 297.
|
2 |
COLLOBERT R, BENGIO S. SVMTorch: support vector machines for large-scale regression problems. Journal of Machine Learning Research, 2001, 1(2): 143- 160.
|
3 |
池亚平, 凌志婷, 王志强, 等. 基于支持向量机与Adaboost的入侵检测系统. 计算机工程, 2019, 45(10): 183-188, 202.
URL
|
|
CHI Y P, LING Z T, WANG Z Q, et al. Intrusion detection system based on support vector machine and Adaboost. Computer Engineering, 2019, 45(10): 183-188, 202.
URL
|
4 |
罗彬珅, 刘利民, 董健, 等. 基于SAE-GA-SVM模型的雷达新型干扰识别. 计算机工程, 2020, 46(6): 281- 287.
URL
|
|
LUO B S, LIU L M, DONG J, et al. Radar new jamming identification based on SAE-GA-SVM model. Computer Engineering, 2020, 46(6): 281- 287.
URL
|
5 |
陈仲晗, 赵俊莉, 黄瑞坤. 基于径向曲线与支持向量回归的颅骨修复方法. 计算机工程, 2022, 48(1): 305- 311.
URL
|
|
CHEN Z H, ZHAO J L, HUANG R K. Skull restoration method based on radial curve and support vector regression. Computer Engineering, 2022, 48(1): 305- 311.
URL
|
6 |
PENG X J. TSVR: an efficient twin support vector machine for regression. Neural Networks, 2010, 23(3): 365- 372.
doi: 10.1016/j.neunet.2009.07.002
|
7 |
SINGH M, CHADHA J, AHUJA P, et al. Reduced twin support vector regression. Neurocomputing, 2011, 74(9): 1474- 1477.
doi: 10.1016/j.neucom.2010.11.003
|
8 |
XU Y T, WANG L S. A weighted twin support vector regression. Knowledge-Based Systems, 2012, 33, 92- 101.
doi: 10.1016/j.knosys.2012.03.013
|
9 |
XU Y T, WANG L S. K-nearest neighbor-based weighted twin support vector regression. Applied Intelligence, 2014, 41(1): 299- 309.
doi: 10.1007/s10489-014-0518-0
|
10 |
GUPTA D. Training primal K-nearest neighbor based weighted twin support vector regression via unconstrained convex minimization. Applied Intelligence, 2017, 47(3): 962- 991.
doi: 10.1007/s10489-017-0913-4
|
11 |
程昊翔, 王坚. 密度加权孪生支持向量回归机. 控制与决策, 2016, 31(4): 755- 758.
URL
|
|
CHENG H X, WANG J. Density-weighted twin support vector regression. Control and Decision, 2016, 31(4): 755- 758.
URL
|
12 |
GU B J, FANG J W, PAN F, et al. Fast clustering-based weighted twin support vector regression. Soft Computing, 2020, 24(8): 6101- 6117.
doi: 10.1007/s00500-020-04746-6
|
13 |
WANG L D, GAO C, ZHAO N N, et al. A projection wavelet weighted twin support vector regression and its primal solution. Applied Intelligence, 2019, 49(8): 3061- 3081.
doi: 10.1007/s10489-019-01422-7
|
14 |
徐奔业, 顾斌杰, 潘丰, 等. 加权光滑投影孪生支持向量回归算法. 计算机工程, 2022, 48(12): 104-111, 118.
URL
|
|
XU B Y, GU B J, PAN F, et al. Weighted smooth projection twin support vector regression algorithm. Computer Engineering, 2022, 48(12): 104-111, 118.
URL
|
15 |
GERT C, TOMASO P. Incremental and decremental support vector machine learning. Advances in Neural Information Processing Systems, 2001, 13(5): 409- 412.
|
16 |
MA J S, THEILER J, PERKINS S. Accurate on-line support vector regression. Neural Computation, 2003, 15(11): 2683- 2703.
doi: 10.1162/089976603322385117
|
17 |
顾斌杰, 潘丰. 精确增量式在线ν型支持向量回归机学习算法. 控制理论与应用, 2016, 33(4): 466- 478.
URL
|
|
GU B J, PAN F. Accurate incremental online ν-support vector regression learning algorithm. Control Theory & Applications, 2016, 33(4): 466- 478.
URL
|
18 |
张浩然, 汪晓东. 回归最小二乘支持向量机的增量和在线式学习算法. 计算机学报, 2006, 29(3): 400- 406.
doi: 10.3321/j.issn:0254-4164.2006.03.007
|
|
ZHANG H R, WANG X D. Incremental and online learning algorithm for regression least squares support vector machine. Chinese Journal of Computers, 2006, 29(3): 400- 406.
doi: 10.3321/j.issn:0254-4164.2006.03.007
|
19 |
郝运河, 张浩峰. 基于双支持向量回归机的增量学习算法. 计算机科学, 2016, 43(2): 230-234, 249.
URL
|
|
HAO Y H, ZHANG H F. Incremental learning algorithm based on twin support vector regression. Computer Science, 2016, 43(2): 230-234, 249.
URL
|
20 |
ZHAO Y P, SUN J G, DU Z H, et al. Online independent reduced least squares support vector regression. Information Sciences: An International Journal, 2012, 201, 37- 52.
|
21 |
曹杰, 顾斌杰, 熊伟丽, 等. 增量式约简最小二乘孪生支持向量回归机. 计算机科学与探索, 2021, 15(3): 553- 563.
URL
|
|
CAO J, GU B J, XIONG W L, et al. Incremental reduced least squares twin support vector regression. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 553- 563.
URL
|
22 |
GU B J, CAO J, PAN F, et al. Incremental learning for Lagrangian ε-twin support vector regression. Soft Computing, 2023, 27(9): 5357- 5375.
|
23 |
TYLAVSKY D J, SOHIE G R L. Generalization of the matrix inversion lemma. Proceedings of the IEEE, 1986, 74(7): 1050- 1052.
|
24 |
GOLUB G H , LOAN C F V . Matrix computations. Baltimore, USA: Johns Hopkins University Press, 1996.
|
25 |
TANVEER M, SHUBHAM K. A regularization on Lagrangian twin support vector regression. International Journal of Machine Learning and Cybernetics, 2017, 8(3): 807- 821.
|