计算机工程

• 开发研究与工程应用 • 上一篇    下一篇

一种改进粒子滤波算法及其在多径估计中的应用

王志远,程兰,谢刚   

  1. (太原理工大学 信息工程学院,太原 030024)
  • 收稿日期:2016-04-12 出版日期:2017-06-15 发布日期:2017-06-15
  • 作者简介:王志远(1989—),男,硕士研究生,主研方向为导航系统定位、多径估计;程兰(通信作者),讲师、博士;谢刚,教授、博士。
  • 基金项目:
    山西省自然科学基金(20140210022-7)。

An Improved Particle Filtering Algorithm and Its Application in Multipath Estimation

WANG Zhiyuan,CHENG Lan,XIE Gang   

  1. (College of Information Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
  • Received:2016-04-12 Online:2017-06-15 Published:2017-06-15

摘要: 针对传统粒子滤波存在的粒子枯竭问题,提出一种基于自适应差分进化的粒子滤波算法。利用自适应差分进化算法代替粒子滤波中的重采样策略来产生新粒子,使粒子向状态后验概率密度函数的高似然区移动,同时提高粒子的多样性。通过一种非线性自适应调节策略自适应地调整变异因子和交叉因子,以提高改进粒子滤波中差分进化的寻优能力。应用于多径估计的仿真结果表明,该算法可克服粒子枯竭问题,与粒子滤波、扩展卡尔曼滤波和差分进化的粒子滤波算法相比,具有更好的多径估计性能。

关键词: 差分进化, 粒子滤波, 非线性自适应控制, 参数估计, 多径效应

Abstract: Aiming at the problem of particle depletion in traditional Particle Filtering(PF),a PF algorithm based on Adaptive Differential Evolution(ADE) is proposed.The ADE algorithm instead of the re-sampling strategy is used to generate new particles in PF,which promotes the particles moving toward the region with high likelihood in the state posterior probability density function,and increases the diversity of the particles.A nonlinear adaptive control strategy is adopted to adjust the mutation factor and the crossover factor for improving the ability of optimization of DE in PF.Simulation results show that applied for multipath estimation,the proposed algorithm can overcome the problem of particle depletion.Compared with algorithms of PF,Extended Kalman Filtering(EKF) and Differential Evolution Particle Filtering(DE-FP),the proposed algorithm has better multipath estimation performance.

Key words: Differential Evolution(DE), Particle Filtering(PF), nonlinear adaptive control, parameter estimation, multipath effect

中图分类号: