[1] LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:936-944. [2] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:779-788. [3] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:6517-6525. [4] REDMON J,FARHADI A.YOLOv3:an incremental improvement[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1-6. [5] MA Jing,CHEN Li,GAO Zhiyong.Hardware implementation and optimization of tiny-YOLO network[J].Digital TV and Wireless Multimedia Communication,2017,815:224-234. [6] GAO Zong,LI Shaobo,CHEN Jinan,et al.Pedestrian detection method based on YOLO network[J].Computer Engineering,2018,44(5):215-219,226.(in Chinese) 高宗,李少波,陈济楠,等.基于YOLO网络的行人检测方法[J].计算机工程,2018,44(5):215-219,226. [7] GONG Jing,CAO Li,QI Lin,et al.Moving vehicle target detection based on YOLOv2 algorithm[J].Electronic Science and Technology,2018,31(6):5-8,12.(in Chinese) 龚静,曹立,亓琳,等.基于YOLOv2算法的运动车辆目标检测方法研究[J].电子科技,2018,31(6):5-8,12. [8] IEEE.IEEE standard for floating-point arithmetic:754-2008[S].Washington D.C.,USA:IEEE Press,2008. [9] QI Jian.NVIDIA Jetson TX2 platform:accelerating the development of miniaturized artificial intelligence terminals[J].Intelligent Manufacturing,2017(5):20-21.(in Chinese) 齐健.NVIDIA Jetson TX2平台:加速发展小型化人工智能终端[J].智能制造,2017(5):20-21. [10] AMERT T,OTTERNESS N,YANG M,et al.GPU scheduling on the NVIDIA TX2:hidden details revealed[C]//Proceedings of 2017 IEEE Real-Time Systems Symposium.Washington D.C.,USA:IEEE Press,2017:104-115. [11] LUSZCZEK P,KURZAK J,YAMAZAKI I,et al.Towards numerical benchmark for half-precision floating point arithmetic[C]//Proceedings of High Performance Extreme Computing Conference.Washington D.C.,USA:IEEE Press,2017:1-5. [12] LIU Yong.Analysis of general scientific computing using GPU acceleration-CUDA technology[J].Science and Technology Information,2008(24):396,413.(in Chinese) 刘勇.使用GPU加速通用科学计算-CUDA技术解析[J].科技信息,2008(24):396,413. [13] SHAFIEE M J,CHYWL B,LI F,et al.Fast YOLO:a fast you only look once system for real-time embedded object detection in video[EB/OL].[2018-12-24].https://arxiv.org/pdf/1709.05943.pdf. [14] XIONG Ying.Extraction of moving objects based on background and inter-frame difference method[J].Computer Era,2014(3):38-41.(in Chinese) 熊英.基于背景和帧间差分法的运动目标提取[J].计算机时代,2014(3):38-41. [15] LI Yuanzheng,LU Zhaoyang,GAO Quanxue,et al.Particle filter and mean shift tracking method based on multi-feature fusion[J].Journal of Electronics and Information Technology,2010,32(2):411-415.(in Chinese) 李远征,卢朝阳,高全学,等.基于多特征融合的均值迁移粒子滤波跟踪算法[J].电子与信息学报,2010,32(2):411-415. [16] DAI Dingzhang.Research on particle filter algorithm and its application in target tracking[D].Harbin:Harbin Institute of Technology,2006.(in Chinese) 戴丁樟.粒子滤波算法研究及其在目标跟踪中的应用[D].哈尔滨:哈尔滨工业大学,2006. [17] OKUMA K,TALEGHANI A,FREITAS N D,et al.A boosted particle filter:multitarget detection and tracking[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2004:28-39. [18] WANG Xin,TANG Zhenmin.An improved Camshift-based particle filter algorithm for real-time target tracking[J].Journal of Image and Graphics,2010,15(10):1507-1514.(in Chinese) 王鑫,唐振民.一种改进的基于Camshift的粒子滤波实时目标跟踪算法[J].中国图象图形学报,2010,15(10):1507-1514. [19] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//Proceedings of 2014 European Conference on Computer Vision.Berlin,Germany:Springer,2014:740-755. [20] RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2014,115(3):211-252. |