参考文献
[1]GARCA S,LUENGO J,HERRERA F.Data preprocessing in data mining[M].Berlin,Germany:Springer,2016.
[2]沈夏炯,王龙,韩道军.人工蜂群优化的BP神经网络在入侵检测中的应用[J].计算机工程,2016,42(2):190-194.
[3]YU Qiao,JIANG Shujuan,ZHANG Yanmei.The performance stability of defect prediction models with class imbalance:an empirical study[J].IEICE Transactions on Information & Systems,2017,100(2):265-272.
[4]ZHANG Chunkai,WANG Guoquan,ZHOU Ying,et al.A new approach for imbalanced data classification based on minimize loss learning[C]//Proceedings of the 2nd International Conference on Data Science in Cyberspace.Washington D.C.,USA:IEEE Press,2017:82-87.
[5]NAPIERALA K,STEFANOWSKI J.Types of minority class examples and their influence on learning classifiers from imbalanced Data[J].Journal of Intelligent Information Systems,2016,46(3):563-597.
[6]HERRERA F.Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced Big Data[J].Fuzzy Sets & Systems,2015,258(3):5-38.
[7]CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357.
[8]HAN Hui,WANG Wenyuan,MAO Binghuan.Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[C]//Proceedings of International Conference on intelligent Computing.Berlin,Germany:Springer,2005:878-887.
[9]衣柏衡,朱建军,李杰.基于改进SMOTE的小额贷款公司客户信用风险非均衡SVM分类[J].中国管理科学,2016,24(3):24-30.
[10]杨俊燕,张优云,朱永生.ε不敏感损失函数支持向量机分类性能研究[J].西安交通大学学报,2007,41(11):1315-1320.
[11]赵淑娟.基于非对称加权和核方法的不平衡数据集[D].南京:南京邮电大学,2013.
[12]ALZATE C,SUYKENS J.Kernel component analysis using an epsilon-insensitive robust loss function[J].IEEE Transactions on Neural Networks,2008,19(9):1583-1598.
[13]WATANABE K.Vector quantization based on ε-insensitive mixture models[J].Neurocomputing,2015,165(3):32-37.
(下转第293页)
(上接第273页)
[14]唐奇,王红瑞,许新宜,等.基于混合核函数SVM水文时序模型及其应用[J].系统工程理论与实践,2014,34(2):521-529.
[15]颜根廷,马广富,肖余之.一种混合核函数支持向量机算法[J].哈尔滨工业大学学报,2007,39(11):1704-1706.
[16]刘东启,陈志坚,徐银,等.面向不平衡数据分类的复合SVM算法研究[EB/OL].[2017-11-06].http://kns.cnki.net/kcms/detail/51.1196.TP.20170401.1738.050.html.
[17]朱喜安,魏国栋.熵值法中无量纲化方法优良标准的探讨[J].统计与决策,2015(2):12-15.
[18]FRANK A,ASUNCION A.UCI machine learning repository[EB/OL].[2017-11-06].http://archive.ics.uci.edu/ml.
[19]刘文贞,陈红岩,李孝禄,等.基于自适应变异粒子群算法的混合核ε-SVM在混合气体定量分析中的应用[J].传感技术学报,2016,29(9):1464-1470.
[20]常甜甜.支持向量机学习算法若干问题的研究[D].西安:西安电子科技大学,2010.
[21]古平,杨炀.面向不均衡数据集中少数类细分的过采样算法[J].计算机工程,2017,43(2):241-247.
编辑顾逸斐
|