[1] HÄMÄLÄINEN W, WEBB G I.A tutorial on statistically sound pattern discovery[J].Data Mining and Knowledge Discovery, 2019, 33(2):325-377. [2] FORESTIER G, PETITJEAN F, SENIN P, et al.Finding discriminative and interpretable patterns in sequences of surgical activities[J].Artificial Intelligence in Medicine, 2017, 82(1):11-19. [3] CHENG A, GRANT C E, NOBLE W S, et al.MoMo:discovery of statistically significant post-translational modification motifs[J].Bioinformatics, 2019, 35(16):2774-2782. [4] NEUBARTH K, SHANAHAN D, CONKLIN D.Supervised descriptive pattern discovery in native American music[J].Journal of New Music Research, 2018, 47(1):1-16. [5] FOURNIER P, LIN J C, KIRAN R U, et al.A survey of sequential pattern mining[J].Data Science and Pattern Recognition, 2017, 1(1):54-77. [6] KOH Y S, RAVANA S D.Unsupervised rare pattern mining:a survey[J].ACM Transactions on Knowledge Discovery from Data, 2016, 10(4):1-29. [7] FANG G, PANDEY G, WANG W, et al.Mining low-support discriminative patterns from dense and high-dimensional data[J].IEEE Transactions on Knowledge and Data Engineering, 2010, 24(2):279-294. [8] 杨皓, 段磊, 胡斌, 等.带间隔约束的Top-k对比序列模式挖掘[J].软件学报, 2015, 26(11):2994-3009. YANG H, DUAN L, HU B, et al.Mining Top-k distinguishing sequential patterns with gap constraint[J].Journal of Software, 2015, 26(11):2994-3009.(in Chinese) [9] WEBB G I, VREEKEN J.Efficient discovery of the most interesting associations[J].ACM Transactions on Knowledge Discovery from Data, 2014, 8(3):1-31. [10] ZHANG A S, SHI W Z, WEBB G I.Mining significant association rules from uncertain data[J].Data Mining and Knowledge Discovery, 2016, 30(4):928-963. [11] HE Z Y, ZHANG S M, GU F Y, et al.Significance-based discriminative sequential pattern mining[J].Expert Systems with Applications, 2019, 122(1):54-64. [12] LLINARES-LÓPEZ F, SUGIYAMA M, PAPAXANTHOS L, et al.Fast and memory-efficient significant pattern mining via permutation testing[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:725-734. [13] LIU G M, ZHANG H J, WONG L.Controlling false positives in association rule mining[C]//Proceedings of the VLDB Endowment.New York, USA:ACM Press, 2011:145-156. [14] 吴军, 欧阳艾嘉, 张琳.面向对比序列模式发现的独立精确置换检验算法[J].计算机工程, 2021, 47(8):45-53, 61. WU J, OUYANG A J, ZHANG L.Discovering contrast sequential patterns based on independent exact permutation testing[J].Computer Engineering, 2021, 47(8):45-53, 61.(in Chinese) [15] HE Z Y, GU F Y, ZHAO C.Conditional discriminative pattern mining:concepts and algorithms[J].Information Sciences, 2017, 375(1):1-15. [16] 高权, 万晓冬.基于负载均衡的并行FP-Growth算法[J].计算机工程, 2019, 45(3):32-35, 40. GAO Q, WAN X D.Parallel FP-growth algorithm based on load balance[J].Computer Engineering, 2019, 45(3):32-35, 40.(in Chinese) [17] ZAKI M J, HSIAO C J.Charm:an efficient algorithm for closed itemset mining[C]//Proceedings of the 2nd SIAM International Conference on Data Mining.Arlington, USA:SIAM Press, 2002:457-473. [18] GUNS T, NIJSSEN S, RAEDT L.K-pattern set mining under constraints[J].IEEE Transactions on Knowledge and Data Engineering, 2013, 25(2):402-418. [19] VAN L M, KNOBBE A.Diverse subgroup set discovery[J].Data Mining and Knowledge Discovery, 2012, 26(2):208-242. [20] LIU X Q, WU J, GONG H P, et al.Mining conditional phosphorylation motifs[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(5):915-927. [21] ZHU Y L, GUO W.Family-wise error rate controlling procedures for discrete data[EB/OL].[2020-11-12].https://arxiv.org/abs/1711.08147. [22] DUA D, GRAFF C.UCI machine learning repository[EB/OL].[2020-11-10].http://archive.ics.uci.edu/ml. [23] LOYOLA G O, MONROY R, RODRÍGUEZ J, et al.Contrast pattern-based classification for bot detection on twitter[J].IEEE Access, 2019, 7:45800-45817. [24] HAN J W, KAMBER M.Data mining:concepts and techniques[M].San Francisco, USA:Morgan Kaufmann Publishers, 2000. |