[1] 郑海斌, 陈晋音, 章燕, 等.面向自然语言处理的对抗攻防与鲁棒性分析综述[J].计算机研究与发展, 2021, 58(8):1727-1750. ZHENG H B, CHEN J Y, ZHANG Y, et al.Survey of adversarial attack, defense and robustness analysis for natural language processing[J].Journal of Computer Research and Development, 2021, 58(8):1727-1750.(in Chinese) [2] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al.Intriguing properties of neural networks[EB/OL].[2022-08-11].https://arxiv.org/abs/1312.6199. [3] PAPERNOT N, MCDANIEL P, SWAMI A, et al.Crafting adversarial input sequences for recurrent neural networks[C]//Proceedings of 2016 IEEE Military Communications Conference.Washington D.C., USA:IEEE Press, 2016:49-54. [4] GOODFELLOW I J, SHLENS J, SZEGEDY C.Explaining and harnessing adversarial examples[EB/OL].[2022-08-11].https://arxiv.org/abs/1412.6572. [5] 姜妍, 张立国.面向深度学习模型的对抗攻击与防御方法综述[J].计算机工程, 2021, 47(1):1-11. JIANG Y, ZHANG L G.Survey of adversarial attacks and defense methods for deep learning model[J].Computer Engineering, 2021, 47(1):1-11.(in Chinese) [6] 马云霞.英汉语言表达上"替换与重复"的差异对比[J].海外英语, 2012(19):247-249. MA Y X.A contrastive study of the differences between "replacement and repetition" in English and Chinese language expression[J].Overseas English, 2012(19):247-249.(in Chinese) [7] LIANG B, LI H C, SU M Q, et al.Deep text classification can be fooled[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.Stockholm, Sweden:International Joint Conferences on Artificial Intelligence Organization, 2018:4208-4215. [8] GAO J, LANCHANTIN J, SOFFA M L, et al.Black-box generation of adversarial text sequences to evade deep learning classifiers[C]//Proceedings of IEEE Security and Privacy Workshops.Washington D.C., USA:IEEE Press, 2018:50-56. [9] LI J F, JI S L, DU T Y, et al.TextBugger:generating adversarial text against real-world applications[C]//Proceedings of 2019 Network and Distributed System Security Symposium.San Diego, USA:[s.n.], 2019:1-9. [10] JIN D, JIN Z J, ZHOU J T, et al.Is BERT really robust?A strong baseline for natural language attack on text classification and entailment[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:8018-8025. [11] ZHANG Z H, LIU M X, ZHANG C, et al.Argot:generating adversarial readable Chinese texts[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.[S.l.]:International Joint Conferences on Artificial Intelligence Organization, 2020:2533-2539. [12] 王文琦, 汪润, 王丽娜, 等.面向中文文本倾向性分类的对抗样本生成方法[J].软件学报, 2019, 30(8):2415-2427. WANG W Q, WANG R, WANG L N, et al.Adversarial examples generation approach for tendency classification on Chinese texts[J].Journal of Software, 2019, 30(8):2415-2427.(in Chinese) [13] NUO C, CHANG G Q, GAO H C, et al.WordChange:adversarial examples generation approach for Chinese text classification[J].IEEE Access, 2020, 8:79561-79572. [14] 仝鑫, 王罗娜, 王润正, 等.面向中文文本分类的词级对抗样本生成方法[J].信息网络安全, 2020, 20(9):12-16. TONG X, WANG L N, WANG R Z, et al.A generation method of word-level adversarial samples for Chinese text classification[J].Netinfo Security, 2020, 20(9):12-16.(in Chinese) [15] COSTA D F, CARVALHO F, MOREIRA B C, et al.Bibliometric analysis on the association between behavioral finance and decision making with cognitive biases such as overconfidence, anchoring effect and confirmation bias[J].Scientometrics, 2017, 111(3):1775-1799. [16] CHENG Y Y, ZHANG J, GONG X L, et al.Research on polymorphism and inertial reading application in text watermarking algorithm[C]//Proceedings of the 9th International Conference on Broadband and Wireless Computing, Communication and Applications.Washington D.C., USA:IEEE Press, 2014:89-95. [17] SAMUELSON W, ZECKHAUSER R.Status quo bias in decision making[J].Journal of Risk and Uncertainty, 1988, 1(1):7-59. [18] 郭可教, 杨奇志.汉字认知的"复脑效应"的实验研究[J].心理学报, 1995, 27(1), 78-83. GUO K J, YANG Q Z."Both-hemisphere effect" in the cognition of Chinese characters[J].ACTA Psychologica Sinica, 1995, 27(1):78-83.(in Chinese) [19] SU T R, LEE H Y.Learning Chinese word representations from glyphs of characters[EB/OL].[2022-08-11].https://doi.org/10.48550/arXiv.1708.04755. [20] LAI S W, XU L H, LIU K, et al.Recurrent convolutional neural networks for text classification[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2015:2267-2273. [21] ELMAN J L.Finding structure in time[J].Cognitive Science, 1990, 14(2):179-211. [22] HE J J, ZOU M, LIU P.Convolutional neural networks for Chinese sentiment classification of social network[C]//Proceedings of 2017 IEEE International Conference on Mechatronics and Automation(ICMA).Washington D.C., USA:IEEE Press, 2017:1-10. [23] JOHNSON R, ZHANG T.Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2017:562-570. [24] VASWANI A, SHAZEER N, PARMAR N K, et al.Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems.Long Beach, USA:[s.n.], 2017:5998-6008. [25] XU S L, ZHENG M F, LI X R.String comparators for Chinese-characters-based record linkages[J].IEEE Access, 2020, 9:3735-3743. [26] 司逸晨, 管有庆.基于Transformer编码器的中文命名实体识别模型[J].计算机工程, 2022, 48(7):66-72. SI Y C, GUAN Y Q.Chinese named entity recognition model based on transformer encoder[J].Computer Engineering, 2022, 48(7):66-72.(in Chinese) |