1 |
诸葛文章, 范瑞东, 罗廷金, 等. 基于独立自表达学习的不完全多视图聚类. 中国科学: 信息科学, 2022, 52 (7): 1186- 1203.
URL
|
|
ZHUGE W Z, FAN R D, LUO T J, et al. Incomplete multi-view clustering via independent self-representation learning. Scientia Sinica (Informationis), 2022, 52 (7): 1186- 1203.
URL
|
2 |
刘永裕, 巩晓婷, 方炜杰, 等. 数据缺失的扩展置信规则库推理方法. 计算机研究与发展, 2022, 59 (3): 661- 673.
URL
|
|
LIU Y Y, GONG X T, FANG W J, et al. Extended belief rule base reasoning approach with missing data. Journal of Computer Research and Development, 2022, 59 (3): 661- 673.
URL
|
3 |
刘彦雯, 张金鑫, 张宏杰, 等. 基于双重局部保持的不完整多视角嵌入学习方法. 计算机工程, 2021, 47 (6): 115-122, 141.
URL
|
|
LIU Y W, ZHANG J X, ZHANG H J, et al. Incomplete multi-view embedded learning method based on double locality preserving. Computer Engineering, 2021, 47 (6): 115-122, 141.
URL
|
4 |
ZHU X F, YANG J Y, ZHANG C Y, et al. Efficient utilization of missing data in cost-sensitive learning. IEEE Transactions on Knowledge and Data Engineering, 2021, 33 (6): 2425- 2436.
doi: 10.1109/TKDE.2019.2956530
|
5 |
刘永楠, 李建中, 高宏. 海量不完整数据的核心数据选择问题的研究. 计算机学报, 2018, 41 (4): 915- 930.
URL
|
|
LIU Y N, LI J Z, GAO H. Research on core-sets selection on massive incomplete data. Chinese Journal of Computers, 2018, 41 (4): 915- 930.
URL
|
6 |
CARRERAS G, MICCINESI G, WILCOCK A, et al. Missing not at random in end of life care studies: multiple imputation and sensitivity analysis on data from the ACTION study. BMC Medical Research Methodology, 2021, 21 (1): 1- 10.
doi: 10.1186/s12874-020-01190-w
|
7 |
CHEN J J, HUNTER S, KISFALVI K, et al. A hybrid approach of handling missing data under different missing data mechanisms: visible 1 and VARSITY trials for ulcerative colitis. Contemporary Clinical Trials, 2021, 100, 106226.
doi: 10.1016/j.cct.2020.106226
|
8 |
HUANG C T, CHANG R C, TSAI Y L, et al. Entropy-based time window features extraction for machine learning to predict acute kidney injury in ICU. Applied Sciences, 2021, 11 (14): 6364.
doi: 10.3390/app11146364
|
9 |
JOSEFSSON M, DANIELS M J. Bayesian semi-parametric G-computation for causal inference in a cohort study with mnar dropout and death. Journal of the Royal Statistical Society Series C: Applied Statistics, 2021, 70 (2): 398- 414.
doi: 10.1111/rssc.12464
|
10 |
ZONG F X, LI R B. Bayesian estimation of log-normal distribution under ranked set sampling with missing data. IEEE Access, 2021, 9, 108112- 108118.
doi: 10.1109/ACCESS.2021.3101204
|
11 |
PILNENSKIY N, SMETANNIKOV I. Feature selection algorithms as one of the Python data analytical tools. Future Internet, 2020, 12 (3): 54.
doi: 10.3390/fi12030054
|
12 |
VAN BUUREN S, GROOTHUIS-OUDSHOORN K. Mice: multivariate imputation by chained equations in R. Journal of Statistical Software, 2011, 45 (3): 1- 67.
|
13 |
OLGA T, MICHAEL C, GAVIN S, et al. Missing value estimation methods for DNA microarrays. Bioinformatics, 2001, 17 (6): 520- 525.
doi: 10.1093/bioinformatics/17.6.520
|
14 |
PENG C Y J, ZHU J. Comparison of two approaches for handling missing covariates in logistic regression. Educational and Psychological Measurement, 2008, 68 (1): 58- 77.
doi: 10.1177/0013164407305582
|
15 |
冷泳林, 陈志奎, 张清辰, 等. 不完整大数据的分布式聚类填充算法. 计算机工程, 2015, 41 (5): 19- 25.
URL
|
|
LENG Y L, CHEN Z K, ZHANG Q C, et al. Distributed clustering and filling algorithm of incomplete big data. Computer Engineering, 2015, 41 (5): 19- 25.
URL
|
16 |
SONG Q B, SHEPPERD M, CHEN X R, et al. Can k-NN imputation improve the performance of C4.5 with small software project data sets?A comparative evaluation. Journal of Systems and Software, 2008, 81 (12): 2361- 2370.
doi: 10.1016/j.jss.2008.05.008
|
17 |
BEN OMEGA P, HUGO N, FERNANDO L B, et al. Evaluation of different approaches for missing data imputation on features associated to genomic data. BioData Mining, 2021, 14 (1): 44.
doi: 10.1186/s13040-021-00274-7
|
18 |
KEERIN P, BOONGOEN T. Improved KNN imputation for missing values in gene expression data. Computers, Materials & Continua, 2022, 70 (2): 4009- 4025.
|
19 |
LEE J Y, STYCZYNSKI M P. NS-KNN: a modified k-nearest neighbors approach for imputing metabolomics data. Metabolomics, 2018, 14 (12): 1- 12.
|
20 |
SAHOO A, GHOSE D K. Imputation of missing precipitation data using KNN, SOM, RF, and FNN. Soft Computing, 2022, 26 (12): 5919- 5936.
doi: 10.1007/s00500-022-07029-4
|
21 |
刘晓琳, 白亮, 赵兴旺, 等. 基于多阶近邻融合的不完整多视图聚类算法. 软件学报, 2022, 33 (4): 1354- 1372.
doi: 10.13328/j.cnki.jos.006471
|
|
LIU X L, BAI L, ZHAO X W, et al. Incomplete multi-view clustering algorithm based on multi-order neighborhood fusion. Journal of Software, 2022, 33 (4): 1354- 1372.
doi: 10.13328/j.cnki.jos.006471
|
22 |
ZHANG S C, LI X L, ZONG M, et al. Efficient KNN classification with different numbers of nearest neighbors. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (5): 1774- 1785.
doi: 10.1109/TNNLS.2017.2673241
|
23 |
BUCK S F. A method of estimation of missing values in multivariate data suitable for use with an electronic computer. Journal of the Royal Statistical Society: Series B (Methodological), 1960, 22 (2): 302- 306.
doi: 10.1111/j.2517-6161.1960.tb00375.x
|
24 |
DEBUSE J C, RAYWARD-SMITH V J. Discretisation of continuous commercial database features for a simulated annealing data mining algorithm. Applied Intelligence, 1999, 11 (3): 285- 295.
doi: 10.1023/A:1008339026836
|
25 |
GAMA J, TORGO L, SOARES C. Dynamic discretization of continuous attributes[C]// Proceedings of the 6th Ibero-American Conference on AI: Progress in Artificial Intelligence. New York, USA: ACM Press, 1998: 160-169.
|
26 |
LIU H, HUSSAIN F, TAN C L, et al. Discretization: an enabling technique. Data Mining and Knowledge Discovery, 2002, 6 (4): 393- 423.
doi: 10.1023/A:1016304305535
|
27 |
JIN L A, BI Y T, HU C Q, et al. A comparative study of evaluating missing value imputation methods in label-free proteomics. Scientific Reports, 2021, 11, 1760.
doi: 10.1038/s41598-021-81279-4
|
28 |
MOHAMMED Y S, ABDELKADER H, PŁAWIAK P, et al. A novel model to optimize multiple imputation algorithm for missing data using evolution methods. Biomedical Signal Processing and Control, 2022, 76, 103661.
doi: 10.1016/j.bspc.2022.103661
|
29 |
OCAMPO A, SCHMIDLI H, QUARG P, et al. Identifying treatment effects using trimmed means when data are missing not at random. Pharmaceutical Statistics, 2021, 20 (6): 1265- 1277.
doi: 10.1002/pst.2147
|
30 |
LI Z X, QIN L, CHENG H, et al. TRIP: an interactive retrieving-inferring data imputation approach. IEEE Transactions on Knowledge and Data Engineering, 2015, 27 (9): 2550- 2563.
doi: 10.1109/TKDE.2015.2411276
|
31 |
YANG Z Z, XUE F, LU W S. Handling missing data for construction waste management: machine learning based on aggregated waste generation behaviors. Resources, Conservation and Recycling, 2021, 175, 105809.
doi: 10.1016/j.resconrec.2021.105809
|
32 |
ZHANG T, ZHANG D G, YAN H R, et al. A new method of data missing estimation with FNN-based tensor heterogeneous ensemble learning for Internet of vehicle. Neurocomputing, 2021, 420, 98- 110.
doi: 10.1016/j.neucom.2020.09.042
|
33 |
SHAN S L, LI Z X, LI Y, et al. WebPut: a web-aided data imputation system for the general type of missing string attribute values[C]//Proceedings of the 35th International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2019: 1952-1955.
|
34 |
郝川艳, 陈亚当, 吴雯, 等. 透视场景的图像填补方法. 计算机辅助设计与图形学学报, 2016, 28 (4): 662- 668.
doi: 10.3969/j.issn.1003-9775.2016.04.017
|
|
HAO C Y, CHEN Y D, WU W, et al. An efficient image editing method for perspective scenes. Journal of Computer-Aided Design & Computer Graphics, 2016, 28 (4): 662- 668.
doi: 10.3969/j.issn.1003-9775.2016.04.017
|
35 |
鲁统伟, 徐子昕, 闵锋. 基于生成对抗网络的知识蒸馏数据增强. 计算机工程, 2022, 48 (4): 70- 80.
URL
|
|
LU T W, XU Z X, MIN F. Knowledge distillation data augmentation based on generation adversarial network. Computer Engineering, 2022, 48 (4): 70- 80.
URL
|
36 |
PHAM T M, CARPENTER J R, MORRIS T P, et al. Population-calibrated multiple imputation for a binary/categorical covariate in categorical regression models. Statistics in Medicine, 2019, 38 (5): 792- 808.
doi: 10.1002/sim.8004
|
37 |
LIU C W. Examining nonnormal latent variable distributions for non-ignorable missing data. Applied Psychological Measurement, 2021, 45 (3): 159- 177.
doi: 10.1177/0146621621990753
|
38 |
CHENG C H, HUANG S F. A novel clustering-based purity and distance imputation for handling medical data with missing values. Soft Computing, 2021, 25 (17): 11781- 11801.
doi: 10.1007/s00500-021-05947-3
|
39 |
VON HIPPEL P T. How many imputations do you need? a two-stage calculation using a quadratic rule. Sociological Methods & Research, 2020, 49 (3): 699- 718.
|
40 |
SER G, KESKIN S, YILMAZ M C. The performance of multiple imputations for different number of imputations. Sains Malaysiana, 2016, 45 (11): 1755- 1761.
|
41 |
KALTON G, KISH L. Some efficient random imputation methods. Communications in Statistics - Theory and Methods, 1984, 13 (16): 1919- 1939.
doi: 10.1080/03610928408828805
|
42 |
佘朝阳, 严馨, 徐广义, 等. 融合数据增强与半监督学习的药物不良反应检测. 计算机工程, 2022, 48 (6): 314- 320.
URL
|
|
SHE Z Y, YAN X, XU G Y, et al. Adverse drug reaction detection combined with data augmentation and semi-supervised learning. Computer Engineering, 2022, 48 (6): 314- 320.
URL
|
43 |
|
44 |
LIU T L, TAO D C. Classification with noisy labels by importance reweighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (3): 447- 461.
|
45 |
WU H, PRASAD S. Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Transactions on Image Processing, 2018, 27 (3): 1259- 1270.
|