[1] KRATZKE N, QUINT P C.Understanding cloud-native applications after 10 years of cloud computing-a systematic mapping study[J].Journal of Systems and Software, 2017, 126:1-16. [2] 施凌鹏, 朱征, 周俊松, 等.面向微服务架构的云系统负载均衡机制[J].计算机工程, 2021, 47(9):44-50, 58. SHI L P, ZHU Z, ZHOU J S, et al.Load balancing mechanism for microservice architecture in cloud-based systems[J].Computer Engineering, 2021, 47(9):44-50, 58.(in Chinese) [3] DMITRY N, MANFRED S S.On micro-services architecture[J].International Journal of Open Information Technologies, 2014, 2(9):24-27. [4] SOLDANI J, TAMBURRI D A, VAN DEN HEUVEL W J.The pains and gains of microservices:a systematic grey literature review[J].Journal of Systems and Software, 2018, 146:215-232. [5] SOLDANI J, BROGI A.Anomaly detection and failure root cause analysis in (micro) service-based cloud applications:a survey[J].ACM Computing Surveys, 2023, 55(3):59. [6] WENG J P, WANG J H, YANG J H, et al.Root cause analysis of anomalies of multitier services in public clouds[J].IEEE/ACM Transactions on Networking, 2018, 26(4):1646-1659. [7] KIM M, SUMBALY R, SHAH S.Root cause detection in a service-oriented architecture[J].ACM SIGMETRICS Performance Evaluation Review, 2013, 41(1):93-104. [8] LIU P, XU H W, OUYANG Q Y, et al.Unsupervised detection of microservice trace anomalies through service-level deep Bayesian networks[C]//Proceedings of the 31st International Symposium on Software Reliability Engineering.Washington D.C., USA:IEEE Press, 2020:48-58. [9] XU H W, CHEN W X, ZHAO N W, et al.Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications[C]//Proceedings of 2018 World Wide Web Conference.Washington D.C., USA:IEEE Press, 2018:187-196. [10] DU M, LI F F, ZHENG G N, et al.DeepLog:anomaly detection and diagnosis from system logs through deep learning[C]//Proceedings of 2017 ACM SIGSAC Conference on Computer and Communications Security.New York, USA:ACM Press, 2017:1285-1298. [11] SIGELMAN B, BARROSO L, BURROWS M, et al.Dapper, a large-scale distributed systems tracing infrastructure[EB/OL].[2021-12-05].https://www.researchgate.net/publication/239595848_Dapper_a_Large-Scale_Distributed_Systems_Tracing_Infrastructure. [12] MENG L, JI F, SUN Y, et al.Detecting anomalies in microservices with execution trace comparison[J].Future Generation Computer Systems, 2021, 116:291-301. [13] JIN M X, LÜ A R, ZHU Y P, et al.An anomaly detection algorithm for microservice architecture based on robust principal component analysis[J].IEEE Access, 2020, 8:226397-226408. [14] ZHOU X, PENG X, XIE T, et al.Latent error prediction and fault localization for microservice applications by learning from system trace logs[C]//Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.New York, USA:ACM Press, 2019:683-694. [15] WANG T, ZHANG W B, XU J W, et al.Workflow-aware automatic fault diagnosis for microservice-based applications with statistics[J].IEEE Transactions on Network and Service Management, 2020, 17(4):2350-2363. [16] BOGATINOVSKI J, NEDELKOSKI S.Multi-source anomaly detection in distributed it systems[C]//Proceedings of International Conference on Service-Oriented Computing.Berlin, Germany:Springer, 2020:201-213. [17] ZUO Y, WU Y L, MIN G Y, et al.An intelligent anomaly detection scheme for micro-services architectures with temporal and spatial data analysis[J].IEEE Transactions on Cognitive Communications and Networking, 2020, 6(2):548-561. [18] MENG W, LIU Y, ZHU Y, et al.LogAnomaly:unsupervised detection of sequential and quantitative anomalies in unstructured logs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2019:4739-4745. [19] ZHANG X, XU Y, LIN Q W, et al.Robust log-based anomaly detection on unstable log data[C]//Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.New York, USA:ACM Press, 2019:807-817. [20] YANG L, CHEN J J, WANG Z, et al.PLELog:semi-supervised log-based anomaly detection via probabilistic label estimation[C]//Proceedings of the 43rd International Conference on Software Engineering.Washington D.C., USA:IEEE Press, 2021:230-231. [21] REIS D C, GOLGHER P B, SILVA A S, et al.Automatic Web news extraction using tree edit distance[C]//Proceedings of the 13th International Conference on World Wide Web.Washington D.C., USA:IEEE Press, 2004:502-511. [22] CHEN H Y, CHEN P F, YU G B.A framework of virtual war room and matrix sketch-based streaming anomaly detection for microservice systems[J].IEEE Access, 2020, 8:43413-43426. [23] NEDELKOSKI S, CARDOSO J, KAO O.Anomaly detection and classification using distributed tracing and deep learning[C]//Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.Washington D.C., USA:IEEE Press, 2019:241-250. [24] BOGATINOVSKI J, NEDELKOSKI S, CARDOSO J, et al.Self-supervised anomaly detection from distributed traces[C]//Proceedings of IEEE/ACM 13th International Conference on Utility and Cloud Computing.Washington D.C., USA:IEEE Press, 2020:342-347. [25] NEDELKOSKI S, CARDOSO J, KAO O.Anomaly detection from system tracing data using multimodal deep learning[C]//Proceedings of the 12th International Conference on Cloud Computing.Washington D.C., USA:IEEE Press, 2019:179-186. [26] 喻靖民, 向凌云, 曾道建.基于Word2Vec的自然语言隐写分析方法[J].计算机工程, 2019, 45(3):309-314. YU J M, XIANG L Y, ZENG D J.Natural language steganalysis method based on Word2Vec[J].Computer Engineering, 2019, 45(3):309-314.(in Chinese) [27] TIELEMAN T, HINTON G.Lecture 6.5-rmsprop:divide the gradient by a running average of its recent magnitude[J].Neural Networks for Machine Learning, 2012, 4(2):26-31. |