[1] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2022-04-28].https://arxiv.org/pdf/1810.04805.pdf. [2] 吐尔地·托合提,维尼拉·木沙江,艾斯卡尔·艾木都拉.基于语义串抽取及主题相似度度量的维吾尔文文本分类[J].中文信息学报,2017,31(4):100-107.Turdi Tohti,Winira Musajan,Askar Hamdulla.Semantic string-based topic similarity measuring approach for uyghur text classification[J].Journal of Chinese Information Processing,2017,31(4):100-107.(in Chinese) [3] 阿力甫·阿不都克里木,李晓.基于TextRank算法和互信息相似度的维吾尔文关键词提取及文本分类[J].计算机科学,2016,43(12):36-40.Ghalip Abdukerim,LI X.Uyghur keyword extraction and text classification based on TextRank algorithm and mutual information similarity[J].Computer Science,2016,43(12):36-40.(in Chinese) [4] YANG Z Q,XU Z H,CUI Y M,et al.Cino:a Chinese minority pre-trained language model[EB/OL].[2022-04-28].https://arxiv.org/abs/2202.13558. [5] LAMPLE G,CONNEAU A.Cross-lingual language model pretraining[EB/OL].[2022-04-28].https://arxiv.org/pdf/1901.07291.pdf. [6] LIU Y H,OTT M,GOYAL N,et al.RoBERTa:a robustly optimized BERT pretraining approach[EB/OL].[2022-04-28].https://arxiv.org/abs/1907.11692. [7] CONNEAU A,KHANDELWAL K,GOYAL N,et al.Unsupervised cross-lingual representation learning at scale[EB/OL].[2022-04-28].https://arxiv.org/abs/1911.02116v2. [8] LIU Y H,GU J T,GOYAL N,et al.Multilingual denoising pre-training for neural machine translation[J].Transactions of the Association for Computational Linguistics,2020,8:726-742. [9] LEWIS M,LIU Y H,GOYAL N,et al.BART:denoising sequence-to-sequence pre-training for natural language generation,translation,and comprehension[EB/OL].[2022-04-28].https://arxiv.org/abs/1910.13461. [10] WU S J,DREDZE M.Are all languages created equal in multilingual BERT?[EB/OL].[2022-04-28].https://arxiv.org/abs/2005.09093. [11] BROWN T B,MANN B,RYDER N,et al.Language models are few-shot learners[J].Advances in Neural Information Processing Systems,2020,33:1877-1901. [12] SCHICK T,SCHÜTZE H.It's not just size that matters:small language models are also few-shot learners[EB/OL].[2022-04-28].https://arxiv.org/abs/2009.07118?utm_medium=email&_hsenc=p2ANqtz-_QwAkpWYd5cbmMTX5gb9_GYEBsWkI_vi0WyIti1i3vzXI7Qw0zTGiLe6VfcuW-v15PRAlZ. [13] ZHANG S H,HUANG H R,LIU J C,et al.Spelling error correction with soft-masked BERT[EB/OL].[2022-04-28].https://arxiv.org/abs/2005.07421v1. [14] LIU P,YUAN W,FU J,et al.Pre-train,prompt,and predict:a systematic survey of prompting methods in natural language processing[EB/OL].[2022-04-28].https://arxiv.org/abs/2107.13586. [15] QI K,WAN H,DU J,et al.Enhancing cross-lingual natural language inference by prompt-learning from cross-lingual templates[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,USA:Association for Computational Linguistics,2022:1910-1923. [16] GRIVAS A,BOGOYCHEV N,LOPEZ A.Low-rank softmax can have unargmaxable classes in theory but rarely in practice[EB/OL].[2022-04-28].https://arxiv.org/abs/2203.06462v2. [17] GAO T Y,FISCH A,CHEN D.Making pre-trained language models better few-shot learners[EB/OL].[2022-04-28].https://arxiv.org/abs/2012.15723. [18] JIANG Z B,XU F F,ARAKI J,et al.How can we know what language models know?[J].Transactions of the Association for Computational Linguistics,2020,8:423-438. [19] DAVISON J,FELDMAN J,RUSH A.Commonsense knowledge mining from pretrained models[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg,USA:Association for Computational Linguistics,2019:1173-1178. [20] LIU X,JI K X,FU Y C,et al.P-Tuning v2:prompt tuning can be comparable to fine-tuning universally across scales and tasks[EB/OL].[2022-04-28].https://arxiv.org/abs/2110.07602v2. [21] SHIN T,RAZEGHI Y,LOGAN IV R L,et al.Autoprompt:eliciting knowledge from language models with automatically generated prompts[EB/OL].[2022-04-28].https://arxiv.org/abs/2010.15980v1. [22] 沙尔旦尔·帕尔哈提,米吉提·阿不里米提,艾斯卡尔·艾木都拉.基于稳健词素序列和LSTM的维吾尔语短文本分类[J].中文信息学报,2020,34(1):63-70.Sardar Parhat,Mijit Ablimit,Askar Hamdulla.Uyghur short text classification based on robust morpheme sequence and LSTM[J].Journal of Chinese Information Processing,2020,34(1):63-70.(in Chinese) [23] LIU X,ZHENG Y N,DU Z X,et al.GPT understands,too[EB/OL].[2022-04-28].https://arxiv.org/abs/2103.10385v1. [24] 加米拉·吾守尔,吴迪,王路路,等.基于多卷积核DPCNN的维吾尔语文本分类联合模型[J].中文信息学报,2021,35(7):63-71.Jiamila Wushouer,WU D,WANG L L,et al.Uyghur text categorization joint model based on multi-convolution kernel DPCNN[J].Journal of Chinese Information Processing,2021,35(7):63-71.(in Chinese) [25] YOON K.Convolutional neural networks for sentence classification[EB/OL].[2022-04-28].http://de.arxiv.org/pdf/1408.5882. [26] XU H W,CHEN Y J,DU Y L,et al.Zeroprompt:scaling prompt-based pretraining to 1,000 tasks improves zero-shot generalization[EB/OL].[2022-04-28].https://arxiv.org/abs/2201.06910. |