1 |
ZHANG Y J , BAI G D , ZHONG M Y , et al. Differentially private collaborative coupling learning for recommender systems. IEEE Intelligent Systems, 2021, 36 (1): 16- 24.
doi: 10.1109/MIS.2020.3005930
|
2 |
WANG S P , LI J , WU G J , et al. Joint optimization of task offloading and resource allocation based on differential privacy in vehicular edge computing. IEEE Transactions on Computational Social Systems, 2022, 9 (1): 109- 119.
doi: 10.1109/TCSS.2021.3074949
|
3 |
HAN L M, ZHAO Y, ZHAO J. POSTER: blockchain-based differential privacy cost management system[C]//Proceedings of the 15th ACM Conference on Computer and Communications Security. New York, USA: ACM Perss, 2020: 925-927.
|
4 |
GUPTA R , ALAM T . Survey on federated-learning approaches in distributed environment. Wireless Personal Communications, 2022, 125 (2): 1631- 1652.
doi: 10.1007/s11277-022-09624-y
|
5 |
朱黎明, 丁晓波, 龚国强. 图数据连续发布中的隐私保护方法. 计算机工程, 2022, 48 (5): 154- 161.
URL
|
|
ZHU L M , DING X B , GONG G Q . Privacy protection method in continuous publishing of graph data. Computer Engineering, 2022, 48 (5): 154- 161.
URL
|
6 |
刘宇涵, 陈红, 刘艺璇, 等. 图数据上的隐私攻击与防御技术. 计算机学报, 2022, 45 (4): 702- 734.
URL
|
|
LIU Y X , CHEN H , LIU Y X , et al. State-of-the-art privacy attacks and defenses on graphs. Chinese Journal of Computers, 2022, 45 (4): 702- 734.
URL
|
7 |
ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]//Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2016: 308-318.
|
8 |
YU D, ZHANG H S, CHEN W, et al. Gradient perturbation is underrated for differentially private convex optimization[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2021: 3117-3123.
|
9 |
BASSILY R, SMITH A, THAKURTA A. Private empirical risk minimization: efficient algorithms and tight error bounds[C]//Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science. Washington D.C., USA: IEEE Press, 2014: 464-473.
|
10 |
|
11 |
|
12 |
|
13 |
MOHAPATRA S , SASY S , HE X , et al. The role of adaptive optimizers for honest private hyperparameter selection. Artificial Intelligence, 2022, 36 (7): 7806- 7813.
|
14 |
|
15 |
|
16 |
YU D, ZHANG H S, CHEN W, et al. Do not let privacy overbill utility: gradient embedding perturbation for private learning[EB/OL]. [2022-07-20]. https://arxiv.org/abs/2102.12677.
|
17 |
|
18 |
NASR M, SHOKRI R, HOUMANSADR A. Improving deep learning with differential privacy using gradient encoding and denoising[EB/OL]. [2022-07-20]. https://arxiv.org/abs/2007.11524.
|
19 |
GATI N J , YANG L T , FENG J , et al. Differentially private tensor train deep computation for Internet of multimedia things. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16 (3): 1- 20.
|
20 |
YANG X, ZHANG H, CHEN W, et al. Normalized/clipped SGD with perturbation for differentially private non-convex optimization[EB/OL]. [2022-07-20]. https://arxiv.org/abs/2206.13033.
|
21 |
|
22 |
DWORK C. Differential privacy: a survey of results[C]//Proceedings of International Conference on Theory and Applications of Models of Computation. Berlin, Germany: Springer, 2008: 1-19.
|
23 |
DWORK C , ROTH A . The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 2014, 9 (3/4): 211- 407.
|
24 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of International Conference on Neural Networks. Washington D.C., USA: IEEE Press, 2002: 1942-1948.
|
25 |
HOUSSEIN E H , GAD A G , HUSSAIN K , et al. Major advances in particle swarm optimization: theory, analysis, and application. Swarm and Evolutionary Computation, 2021, 63, 100868.
|
26 |
KAIROUZ P, OH S, VISWANATH P. The composition theorem for differential privacy[C]//Proceedings of the 32nd International Conference on Machine Learning. New York, USA: ACM Press, 2015: 1376-1385.
|
27 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2022-07-20]. https://arxiv.org/abs/1602.05629.
|
28 |
GONG M G , XIE Y , PAN K , et al. A survey on differentially private machine learning. IEEE Computational Intelligence Magazine, 2020, 15 (2): 49- 64.
|
29 |
MIRONOV I. Rényi differential privacy[C]//Proceedings of the 30th IEEE Computer Security Foundations Symposium. Washington D.C., USA: IEEE Press, 2017: 263-275.
|