1 |
CUI Y G, CAO K, CAO G T, et al. Client scheduling and resource management for efficient training in heterogeneous IoT-edge federated learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(8): 2407- 2420.
doi: 10.1109/TCAD.2021.3110743
|
2 |
李尤慧子, 俞海涛, 殷昱煜, 等. 基于超级账本的集群联邦优化模型. 计算机工程, 2023, 49(1): 22- 30.
doi: 10.19678/j.issn.1000-3428.0064301
|
|
LI Y H Z, YU H T, YIN Y Y, et al. Cluster federated optimization model based on hyperledger fabric. Computer Engineering, 2023, 49(1): 22- 30.
doi: 10.19678/j.issn.1000-3428.0064301
|
3 |
叶进, 韦涛, 胡亮青, 等. 一种面向智联网的高效联邦学习算法. 计算机工程, 2023, 49(12): 243-251, 261.
doi: 10.19678/j.issn.1000-3428.0066803
|
|
YE J, WEI T, HU L Q, et al. An efficient federated learning algorithm for artificial intelligence of things. Computer Engineering, 2023, 49(12): 243-251, 261.
doi: 10.19678/j.issn.1000-3428.0066803
|
4 |
|
5 |
LI C N, ZENG X, ZHANG M, et al. PyramidFL: a fine-grained client selection framework for efficient federated learning[C]//Proceedings of the 28th Annual International Conference on Mobile Computing and Networking. New York, USA: ACM Press, 2022: 158-171.
|
6 |
TANG M X, NING X F, WANG Y T, et al. FedCor: correlation-based active client selection strategy for heterogeneous federated learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 10092-10101.
|
7 |
HUANG T S, LIN W W, SHEN L, et al. Stochastic client selection for federated learning with volatile clients. IEEE Internet of Things Journal, 2022, 9(20): 20055- 20070.
doi: 10.1109/JIOT.2022.3172113
|
8 |
DENG Y H, LYU F, REN J, et al. AUCTION: automated and quality-aware client selection framework for efficient federated learning. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(8): 1996- 2009.
doi: 10.1109/TPDS.2021.3134647
|
9 |
PUTRA M A P, PUTRI A R, ZAINUDIN A, et al. ACS: accuracy-based client selection mechanism for federated industrial IoT. Internet of Things, 2023, 21, 100657.
doi: 10.1016/j.iot.2022.100657
|
10 |
SHEN G Y, GAO D H, SONG D X, et al. Fast heterogeneous federated learning with hybrid client selection[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2208.05135.
|
11 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2023-07-05]. https://arxiv.org/pdf/1602.05629.
|
12 |
WANG J Y, LIU Q H, LIANG H, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 7611-7623.
|
13 |
|
14 |
FRABONI Y, VIDAL R, KAMENI L, et al. Clustered sampling: low-variance and improved representativity for clients selection in federated learning[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2105.05883.
|
15 |
|
16 |
WANG L P, WANG W, LI B. CMFL: mitigating communication overhead for federated learning[C]// Proceedings of the 39th International Conference on Distributed Computing Systems (ICDCS). Washington D. C., USA: IEEE Press, 2019: 954-964.
|
17 |
温依霖, 赵乃良, 曾艳, 等. 基于本地模型质量的客户端选择方法. 计算机工程, 2023, 49(6): 131- 143.
doi: 10.19678/j.issn.1000-3428.0065658
|
|
WEN Y L, ZHAO N L, ZENG Y, et al. Client selection method based on local model quality. Computer Engineering, 2023, 49(6): 131- 143.
doi: 10.19678/j.issn.1000-3428.0065658
|
18 |
YI L P, GANG W, LIU X G. QSFL: A two-level uplink communication optimization framework for federated learning[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2022: 25501-25513.
|
19 |
BALAKRISHNAN R, LI T, ZHOU T, et al. Diverse client selection for federated learning via submodular maximization[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM Press, 2022: 1-10.
|
20 |
CHO Y J, WANG J, JOSHI G. Towards understanding biased client selection in federated learning[C]//Proceedings of International Conference on Artificial Intelligence and Statistics. New York, USA: ACM Press, 2022: 10351-10375.
|
21 |
李冠彬, 张锐斐, 陈超, 等. 基于旋转不变深度层次聚类网络的点云分析. 软件学报, 2022, 33(11): 4356- 4378.
URL
|
|
LI G B, ZHANG R F, CHEN C, et al. Rotation-invariant deep hierarchical cluster network for point cloud analysis. Journal of Software, 2022, 33(11): 4356- 4378.
URL
|
22 |
刘艳, 王田, 彭绍亮, 等. 基于边缘的联邦学习模型清洗和设备聚类方法. 计算机学报, 2021, 44(12): 2515- 2528.
URL
|
|
LIU Y, WANG T, PENG S L, et al. Edge-based model cleaning and device clustering in federated learning. Chinese Journal of Computers, 2021, 44(12): 2515- 2528.
URL
|
23 |
|
24 |
李志鹏, 国雍, 陈耀佛, 等. 基于数据生成的类别均衡联邦学习. 计算机学报, 2023, 46(3): 609- 625.
URL
|
|
LI Z P, GUO Y, CHEN Y F, et al. Class-balanced federated learning based on data generation. Chinese Journal of Computers, 2023, 46(3): 609- 625.
URL
|
25 |
JIANG Z D, XU Y, XU H L, et al. Heterogeneity-aware federated learning with adaptive client selection and gradient compression[C]//Proceedings of the IEEE Conference on Computer Communications. New York, USA: IEEE Press, 2023: 1-10.
|