1 |
HARIKA J, BALEESHWAR P, NAVYA K, et al. A review on artificial intelligence with deep human reasoning[C]//Proceedings of International Conference on Applied Artificial Intelligence and Computing. Washington D. C., USA: IEEE Press, 2022: 81-84.
|
2 |
KUMAR C N, NITHIN E, KRISHNA C S, et al. Real-time face mask detection using computer vision and machine learning[C]//Proceedings of the 2nd International Conference on Electronics and Renewable Systems. Washington D. C., USA: IEEE Press, 2023: 1532-1537.
|
3 |
ABDAR M, FAHAMI M A, RUNDO L, et al. Hercules: deep hierarchical attentive multilevel fusion model with uncertainty quantification for medical image classification. IEEE Transactions on Industrial Informatics, 2023, 19(1): 274- 285.
doi: 10.1109/TII.2022.3168887
|
4 |
杨越佳, 华蓓, 钟志威, 等. 基于同态加密的隐私保护逻辑回归协同计算. 计算机工程, 2023, 49(4): 23- 31.
URL
|
|
YANG Y J, HUA B, ZHONG Z W, et al. Collaborative computing of privacy-preserving logistic regression based on homomorphic encryption. Computer Engineering, 2023, 49(4): 23- 31.
URL
|
5 |
GU Z P, YANG Y X. Detecting malicious model updates from federated learning on conditional variational autoencoder[C]//Proceedings of International Parallel and Distributed Processing Symposium. Washington D. C., USA: IEEE Press, 2021: 671-680.
|
6 |
LI L, ZHANG X Y. PPVerifier: a privacy-preserving and verifiable federated learning method in cloud-edge collaborative computing environment. IEEE Internet of Things Journal, 2023, 10(10): 8878- 8892.
doi: 10.1109/JIOT.2022.3233024
|
7 |
FALOWO O. Effect of users' equipment capability on utilization of heterogeneous wireless networks[C]//Proceedings of the 18th International Conference on Wireless and Mobile Computing, Networking and Communications. Washington D. C., USA: IEEE Press, 2022: 449-452.
|
8 |
叶进, 韦涛, 胡亮青, 等. 一种面向智联网的高效联邦学习算法. 计算机工程, 2023, 49(12): 243-251, 261.
URL
|
|
YE J, WEI T, HU L Q, et al. An efficient federated learning algorithm for artificial intelligence of things. Computer Engineering, 2023, 49(12): 243-251, 261.
URL
|
9 |
PHONG L T, PHUONG T T. Privacy-preserving deep learning via weight transmission. IEEE Transactions on Information Forensics and Security, 2019, 14(11): 3003- 3015.
doi: 10.1109/TIFS.2019.2911169
|
10 |
GU B, XU A, HUO Z Y, et al. Privacy-preserving asynchronous vertical federated learning algorithms for multiparty collaborative learning[EB/OL]. [2023-05-13]. http://arxiv.org/abs/2008.06233v1.
|
11 |
ZHANG J, ZHOU J T, GUO J Y, et al. Visual object detection for privacy-preserving federated learning. IEEE Access, 2023, 11, 33324- 33335.
doi: 10.1109/ACCESS.2023.3263533
|
12 |
AKTER M, MOUSTAFA N, LYNAR T, et al. Edge intelligence: federated learning-based privacy protection framework for smart healthcare systems. IEEE Journal of Biomedical and Health Informatics, 2022, 26(12): 5805- 5816.
doi: 10.1109/JBHI.2022.3192648
|
13 |
PAREKH R, PATEL N, GUPTA R, et al. GeFL: gradient encryption-aided privacy preserved federated learning for autonomous vehicles. IEEE Access, 2023, 11, 1825- 1839.
doi: 10.1109/ACCESS.2023.3233983
|
14 |
LEE Y, PARK S, AHN J, et al. Accelerated federated learning via greedy aggregation. IEEE Communications Letters, 2022, 26(12): 2919- 2923.
doi: 10.1109/LCOMM.2022.3203581
|
15 |
ELTARAS T, SABRY F, LABDA W, et al. Efficient verifiable protocol for privacy-preserving aggregation in federated learning. IEEE Transactions on Information Forensics and Security, 2023, 18, 2977- 2990.
doi: 10.1109/TIFS.2023.3273914
|
16 |
ZHANG Z Z, WU L B, HE D B, et al. G-VCFL; grouped verifiable chained privacy-preserving federated learning. IEEE Transactions on Network and Service Management, 2022, 19(4): 4219- 4231.
doi: 10.1109/TNSM.2022.3196404
|
17 |
ZHOU H, YANG G, HUANG Y X, et al. Privacy-preserving and verifiable federated learning framework for edge computing. IEEE Transactions on Information Forensics and Security, 2023, 18, 565- 580.
doi: 10.1109/TIFS.2022.3227435
|
18 |
GAO S, LUO J J, ZHU J M, et al. VCD-FL: verifiable, collusion-resistant, and dynamic federated learning. IEEE Transactions on Information Forensics and Security, 2023, 18, 3760- 3773.
doi: 10.1109/TIFS.2023.3271268
|
19 |
TANG X Y, SHEN M, LI Q, et al. PILE: robust privacy-preserving federated learning via verifiable perturbations. IEEE Transactions on Dependable and Secure Computing, 2023, 20(6): 5005- 5023.
doi: 10.1109/TDSC.2023.3239007
|
20 |
YANG Z, ZHOU M, YU H Y, et al. Efficient and secure federated learning with verifiable weighted average aggregation. IEEE Transactions on Network Science and Engineering, 2023, 10(1): 205- 222.
doi: 10.1109/TNSE.2022.3206243
|
21 |
XU G W, LI H W, LIU S, et al. VerifyNet: secure and verifiable federated learning. IEEE Transactions on Information Forensics and Security, 2020, 15, 911- 926.
doi: 10.1109/TIFS.2019.2929409
|
22 |
HAHN C, KIM H, KIM M, et al. VerSA: verifiable secure aggregation for cross-device federated learning. IEEE Transactions on Dependable and Secure Computing, 2023, 20(1): 36- 52.
doi: 10.1109/TDSC.2021.3126323
|
23 |
LUO F C, WANG H Y, YAN X F. Comments on "VERSA; verifiable secure aggregation for cross-device federated learning". IEEE Transactions on Dependable and Secure Computing, 2024, 21(1): 499- 500.
doi: 10.1109/TDSC.2023.3253082
|
24 |
|
25 |
ZHENG Y F, LAI S Q, LIU Y, et al. Aggregation service for federated learning: an efficient, secure, and more resilient realization[EB/OL]. [2023-05-13]. https://arxiv.org/abs/2202.01971v1.
|