1 |
|
2 |
QI Q S, XU Z Y, RANI P. Big data analytics challenges to implementing the intelligent Industrial Internet of Things(IIoT) systems in sustainable manufacturing operations. Technological Forecasting and Social Change, 2023, 190, 122401.
doi: 10.1016/j.techfore.2023.122401
|
3 |
赵朝阳, 朱贵波, 王金桥. ChatGPT给语言大模型带来的启示和多模态大模型新的发展思路. 数据分析与知识发现, 2023, 7(3): 26- 35.
URL
|
|
ZHAO C Y, ZHU G B, WANG J Q. The inspiration brought by ChatGPT to LLM and the new development ideas of multi-modal large model. Data Analysis and Knowledge Discovery, 2023, 7(3): 26- 35.
URL
|
4 |
GAFF B M, SUSSMAN H E, GEETTER J. Privacy and big data. Computer, 2014, 47(6): 7- 9.
doi: 10.1109/MC.2014.161
|
5 |
李少波, 杨磊, 李传江, 等. 联邦学习概述: 技术、应用及未来. 计算机集成制造系统, 2022, 28(7): 2119- 2138.
URL
|
|
LI S B, YANG L, LI C J, et al. Overview of federated learning: technology, applications and future. Computer Integrated Manufacturing Systems, 2022, 28(7): 2119- 2138.
URL
|
6 |
|
7 |
SATTLER F, WIEDEMANN S, MULLER K R, et al. Robust and communication-efficient federated learning from non-i. i. d. data. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3400- 3413.
doi: 10.1109/TNNLS.2019.2944481
|
8 |
BOTTOU L. Large-scale machine learning with stochastic gradient descent[C]//Proceedings of COMPSTAT'10. Heidelberg, Germany: Physica-Verlag HD, 2010: 177-186.
|
9 |
|
10 |
|
11 |
WANG J, LIU Q, LIANG H, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization[EB/OL]. [2023-02-20]. https://arxiv.org/abs/2007.07481.
|
12 |
SATTLER F, MULLER K R, SAMEK W. Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3710- 3722.
doi: 10.1109/TNNLS.2020.3015958
|
13 |
|
14 |
ZHU H Y, JIN Y C. Multi-objective evolutionary federated learning. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(4): 1310- 1322.
doi: 10.1109/TNNLS.2019.2919699
|
15 |
QOLOMANY B, AHMAD K, AL-FUQAHA A, et al. Particle swarm optimized federated learning for industrial IoT and smart city services[C]//Proceedings of GLOBECOM'20. Washington D. C., USA: IEEE Press, 2020: 1-6.
|
16 |
|
17 |
YAO X, SUN L F. Continual local training for better initialization of federated models[C]//Proceedings of 2020 IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2020: 1736-1740.
|
18 |
WANG Z B, SONG M K, ZHANG Z F, et al. Beyond inferring class representatives: user-level privacy leakage from federated learning[C]//Proceedings of INFOCOM'19. Washington D. C., USA: IEEE Press, 2019: 2512-2520.
|
19 |
陈乃月, 金一, 李浥东, 等. 基于区块链的公平性联邦学习模型. 计算机工程, 2022, 48(6): 33- 41.
URL
|
|
CHEN N Y, JIN Y, LI Y D, et al. Federated learning model with fairness based on blockchain. Computer Engineering, 2022, 48(6): 33- 41.
URL
|
20 |
温亚兰, 陈美娟. 融合联邦学习与区块链的医疗数据共享方案. 计算机工程, 2022, 48(5): 145-153, 161.
URL
|
|
WEN Y L, CHEN M J. Medical data sharing scheme combined with federal learning and blockchain. Computer Engineering, 2022, 48(5): 145-153, 161.
URL
|
21 |
|
22 |
LEE G, SHIN Y, JEONG M, et al. Preservation of the global knowledge by not-true self knowledge distillation in federatedlearning[EB/OL]. [2023-02-20]. https://arxiv.org/abs/2106.03097v2.
|
23 |
ALJUNDI R, BABILONI F, ELHOSEINY M, et al. Memory aware synapses: learning what (not) to forget[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 144-161.
|
24 |
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of National Conferences on Aritificial Intelligence. [S. l. ]: AAAI Press, 1996: 226-231.
|
25 |
KARIMIREDDY S, KALE S, MOHRI M, et al. Scaffold: stochastic controlled averaging for on-device federated learning[C]//Proceedings of the 37th International Conference on Machine Learning. [S. l. ]: PMLR, 2020: 1-10.
|
26 |
|
27 |
CHEN Y, WANG L, XIN Q, et al. MetaFed: federated learning among federations with cyclic knowledge distillation for personalized healthcare[EB/OL]. [2023-02-20]. https://arxiv.org/abs/2206.08516.
|