[1] GAO Ninghua,WANG Heng,FENG Xinghua.Classification method of electrocardiogram signals based on dynamic fuzzy decision tree[J].Computer Engineering,2020,46(1):80-86.(in Chinese)高宁化,王姮,冯兴华.基于动态模糊决策树的心电信号分类方法[J].计算机工程,2020,46(1):80-86. [2] ZHOU Linyong,XIE Xiaoyao,LIU Zhijie,et al.Research on pooling method of convolution neural network[J].Computer Engineering,2019,45(4):211-216.(in Chinese)周林勇,谢晓尧,刘志杰,等.卷积神经网络池化方法研究[J].计算机工程,2019,45(4):211-216. [3] KACHUEE M,KIANI M M,MOHAMMADZADE H,et al.Cuffless blood pressure estimation algorithms for continuous health-care monitoring[J].IEEE Transactions on Biomedical Engineering,2017,64(4):859-869. [4] XU Zhihong,LIU Jiexin,CHEN Xianxiang,et al.Continuous blood pressure estimation based on multiple parameters from electrocardiogram and photoplethysmogram by back-propagation neural network[J].Computers in Industry,2017,89:50-59. [5] HALL J E.Guyton and Hall textbook of medical physiology[M].[S.1.]:Saunders Press,2010. [6] KUMAR N,AGRAWAL A,DEB S.Cuffless BP measurement using a correlation study of pulse transient time and heart rate[C]//Proceedings of International Conference on Advances in Computing,Communications and Informatics.Washington D.C.,USA:IEEE Press,2014:1538-1541. [7] XING Xiaomen,SUN Mingshan.Optical blood pressure estimation with photoplethysmography and FFT-based neural networks[J].Biomedical Optics Express,2016,7(8):3007-3020. [8] MAO J,JAIN A K.Artificial neural networks for feature extraction and multivariate data projection[J].IEEE Transactions on Neural Networks,1995,6(2):296-317. [9] GUYTON A C,COLEMAN T G,COWLEY A W,et al.Arterial pressure regulation:overriding dominance of the kidneys in long-term regulation and in hypertension[J].American Journal of the Medical Sciences,1972,52(5):584-594. [10] CHARLTON P H,BONNICI T,TARASSENKO T,et al.An assessment of algorithms to estimate respiratory rate from theelectrocardiogram and photoplethysmogram[J].Physiological Measurement,2016,37(4):610-623. [11] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computing,1997,9(8):1735-1780. [12] SU Peng,DING Xiaorong,ZHANG Yuanting,et al.Long-term blood pressure prediction with deep recurrent neural networks[C]//Proceedings of 2018 IEEE EMBS International Conference on Biomedical & Health Informatics.Las Vegas,USA:IEEE Press,2017:1-19. [13] GOLDBERGER A L,AMARAL L A,GLASS L,et al.Physio bank,physio toolkit,and physio net:components of a new research resource for complex physiologic signals[J].Circulation,2000,101(23):215-220. [14] SELESNICK I W.Wavelet transform with tunable Q-factor[J].IEEE Transactions on Signal Processing,2011,59(8):3560-3575. [15] UNSER M,ALDROUBI A.A review of wavelets in biomedical applications[C]//Proceedings of the IEEE,1996,84(4):626-638. [16] DONOHO D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627. [17] ZHAO Bo,HAO Yingdi,LI Xinzheng,et al.Human blood pressure prediction method based on support vector regression[J].Journal of Yanshan University,2017,41(5):438-443.(in Chinese)赵博,赫英迪,李信政,等.基于支持向量回归的人体血压预测方法[J].燕山大学学报,2017,41(5):438-443. [18] PICKERING T G.Isolated diastolic hypertension[J].Journal of Clinical Hypertension,2003,5(6):411-413. [19] SCHUSTER M,PALIWAL K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681. [20] ARLINGTON S.Association for the advancement of medical instrumentation[J].Journal of Clinical Engineering,2016,41(2):59-60. |