作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2019, Vol. 45 ›› Issue (7): 164-169. doi: 10.19678/j.issn.1000-3428.0051190

• 安全技术 • 上一篇    下一篇

基于循环神经网络的Modbus/TCP模糊测试算法

黄河1,2, 陈君1, 邓浩江1   

  1. 1. 中国科学院声学研究所 国家网络新媒体工程技术研究中心, 北京 100190;
    2. 中国科学院大学, 北京 100190
  • 收稿日期:2018-04-12 修回日期:2018-05-30 出版日期:2019-07-15 发布日期:2019-07-23
  • 作者简介:黄河(1990-),男,博士研究生,主研方向为网络安全、人工智能、数据管理;陈君(通信作者)、邓浩江,研究员、博士。
  • 基金资助:
    中科院率先行动计划“端到端关键技术研究与系统研发”(SXJH201609)。

Fuzzy Testing Algorithm for Modbus/TCP Based on Recurrent Neural Networks

HUANG He1,2, CHEN Jun1, DENG Haojiang1   

  1. 1. National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2018-04-12 Revised:2018-05-30 Online:2019-07-15 Published:2019-07-23

摘要: Modbus/TCP安全漏洞挖掘的相关协议包常采用随机方式生成,易产生过多无效包,降低漏洞挖掘效率。为此,基于循环神经网络(RNN)提出结构性模糊算法Fuzzy-RNN。从Modbus/TCP训练集中学习协议包各部分的概率分布,并考虑极端参数条件,实现针对性的模糊生成。实验结果表明,与通用模糊测试器GPF相比,Fuzzy-RNN算法在Modbus Slave、xMasterSlave等多种仿真软件上能以更高概率实现合法协议包的模糊生成,测试时间缩减50%以上,测试效率明显提高。

关键词: 工业控制协议, 漏洞挖掘, 模糊测试, 网络安全, 循环神经网络, 序列到序列

Abstract: The related protocol packets for Modbus/TCP security vulnerability mining are often generated in a random way,which is prone to generate excessive invalid packets and reduce the efficiency of vulnerability mining.To deal with this problem,a structural fuzzy algorithm named Fuzzy-RNN is proposed based on the concept of Recurrent Neural Networks(RNN).It learns the probability distribution of each part of the proptocol packet from the Modbus-TCP training set,and takes the corner cases into account,so as to realize the targeted fuzzy generation.Experimental results show that compared with the General Protocol Fuzzer(GPF),in a variety of simulation software such as Modbus Slave and xMasterSlave,the Fuzzy-RNN algorithm can achieve the fuzzy generation of legal protocol packets with a higher probability.The test time can be reduced by more than 50%,and its efficiency can be obviously improved.

Key words: Industrial Control Protocol(ICP), vulnerability mining, fuzzy testing, network security, Recurrent Neural Networks(RNN), sequence to sequence(seq2seq)

中图分类号: