[1] GAO Y, ZHANG Y, XIAO T.Implicit syntactic features for target-dependent sentiment analysis[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing.Washington D.C., USA:IEEE Press, 2017:516-524. [2] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al.SemEval-2014 Task 4:aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation.Washington D.C., USA:IEEE Press, 2014:27-35. [3] KESHAVARZ H, ABADEH M S.ALGA:adaptive lexicon learning using genetic algorithm for sentiment analysis of microblogs[J].Knowledge-Based Systems, 2017, 122:1-16. [4] ZHENG L, WANG H, GAO S.Sentimental feature selection for sentiment analysis of Chinese online reviews[J].International Journal of Machine Learning and Cybernetics, 2018, 9(1):75-84. [5] 周锦峰, 叶施仁, 王晖.基于深度卷积神经网络模型的文本情感分类[J].计算机工程, 2019, 45(3):300-308. ZHOU J F, YE S R, WANG H.Text sentiment classification based on deep convolutional neural network model[J].Computer Engineering, 2019, 45(3):300-308.(in Chinese) [6] AL-SMADI M, QAWASMEH O, AL-AYYOUB M, et al.Deep recurrent neural network vs.support vector machine for aspect-based sentiment analysis of Arabic hotels' reviews[J].Journal of Computational Science, 2017, 27:386-393. [7] TANG D, QIN B, FENG X, et al.Effective LSTMs for target dependent sentiment classification[EB/OL].[2020-12-05].https://aclanthology.org/C16-1311.pdf. [8] MA D, LI S, ZHANG X, et al.Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2017:4068-4074. [9] ZHANG B, XIONG D, SU J, et al.Learning better discourse representation for implicit discourse relation recognition via attention networks[J].Neurocomputing, 2018, 275:1241-1249. [10] ZHANG S, TONG H, XU J, et al.Graph convolutional networks:a comprehensive review[J].Computational Social Networks, 2019, 6(11):1-23. [11] SUN K, ZHANG R C.Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Washington D.C., USA:IEEE Press, 2019:5683-5692. [12] HUANG B X, CARLEY K.Syntaxaware aspect level sentiment classification with graph attention networks[C]//Proceedings of Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Washington D.C., USA:IEEE Press, 2019:5472-5480. [13] ZHANG C, LI Q, SONG D.Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Washington D.C., USA:IEEE Press, 2019:4560-4570. [14] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2020-12-05].https://aclanthology.org/N19-1423.pdf. [15] CHUNG J, GULCEHRE C, CHO K, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2020-12-05].http://pdfs.semanticscholar.org/25f0/625a92f6054b11057423111f9285c78376fe.pdf. [16] 屠可伟, 李俊.句法分析前沿动态综述[J].中文信息学报, 2020, 34(7):30-41. TU K W, LI J.A survey of recent developments in syntactic parsing[J].Journal of Chinese Information Processing, 2020, 34(7):30-41.(in Chinese) [17] DOZAT T, MANNING C D.Deep biaffine attention for neural dependency parsing[EB/OL].[2020-12-05].https://nlp.stanford.edu/pubs/dozat2017deep.pdf. [18] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2017:5998-6010. [19] WANG Y, HUANG M, ZHAO L, et al.Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Washington D.C., USA:IEEE Press, 2016:606-615. [20] TANG D Y, QIN B, FENG X C, et al.Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics.Washington D.C., USA:IEEE Press, 2016:3298-3307. [21] TANG D, QIN B, LIU T.Aspect level sentiment classification with deep memory network[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Washington D.C., USA:IEEE Press, 2016:214-224. [22] CHEN P, SUN Z, BING L, et al.Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Washington D.C., USA:IEEE Press, 2017:452-461. [23] XUE W, LI T.Aspect based sentiment analysis with gated convolutional networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2018:2514-2523. |