[1] TRIANTO R, TAI T C, WANG J C.Fast-LSTM acoustic model for distant speech recognition[C]//Proceedings of 2018 IEEE International Conference on Consumer Electronics.Washington D.C., USA:IEEE Press, 2018:1-4. [2] OCQUAYE E N N.Speech emotion recognition via domain adaptation[D].Zhenjiang:Jiangsu University, 2020. [3] 张鹤鹏.基于表情和语音信号的情感识别研究[D].济南:山东大学, 2020. ZHANG H P.Research on emotion recognition based on expression and speech signal[D].Jinan:Shandong University, 2020.(in Chinese) [4] 张昕然.跨库语音情感识别若干关键技术研究[D].南京:东南大学, 2016. ZHANG X R.Research on several key technologies in cross-corpus speech emotion recognition[D].Nanjing:Southeast University, 2016.(in Chinese) [5] TZIRAKIS P, ZHANG J H, SCHULLER B W.End-to-end speech emotion recognition using deep neural networks[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2018:5089-5093. [6] LIAN Z, LIU B, TAO J H.CTNet:conversational transformer network for emotion recognition[J].IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29(1):985-1000. [7] DENG J, XU X Z, ZHANG Z X, et al.Semisupervised autoencoders for speech emotion recognition[J].IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(1):31-43. [8] 高帆, 张雪英, 黄丽霞, 等.基于DBM-LSTM的多特征语音情感识别[J].计算机工程与设计, 2020, 41(2):465-470. GAO F, ZHANG X Y, HUANG L X, et al.Multi-feature speech emotion recognition based on DBM-LSTM[J].Computer Engineering and Design, 2020, 41(2):465-470.(in Chinese) [9] 宋春晓.情感语音的非线性特征提取及特征优化的研究[D].太原:太原理工大学, 2018. SONG C X.Research on nonlinear feature extraction and feature optimization of emotional speech[D].Taiyuan:Taiyuan University of Technology, 2018.(in Chinese) [10] GUO L L, WANG L B, DANG J W, et al.A feature fusion method based on extreme learning machine for speech emotion recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2018:2666-2670. [11] MIRSAMADI S, BARSOUM E, ZHANG C.Automatic speech emotion recognition using recurrent neural networks with local attention[C]//Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2017:2227-2231. [12] ZHANG T, ZHENG W M, CUI Z, et al.Spatial-temporal recurrent neural network for emotion recognition[J].IEEE Transactions on Cybernetics, 2019, 49(3):839-847. [13] TAO F, LIU G.Advanced LSTM:a study about better time dependency modeling in emotion recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2018:2906-2910. [14] PENG Z C, ZHU Z, UNOKI M, et al.Auditory-inspired end-to-end speech emotion recognition using 3D convolutional recurrent neural networks based on spectral-temporal representation[C]//Proceedings of 2018 IEEE International Conference on Multimedia and Expo.Washington D.C., USA:IEEE Press, 2018:1-6. [15] SHU X B, ZHANG L Y, SUN Y L, et al.Host-parasite:graph LSTM-in-LSTM for group activity recognition[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2):663-674. [16] MAO Q R, DONG M, HUANG Z W, et al.Learning salient features for speech emotion recognition using convolutional neural networks[J].IEEE Transactions on Multimedia, 2014, 16(8):2203-2213. [17] XIE Y, LIANG R Y, LIANG Z L, et al.Speech emotion classification using attention-based LSTM[J].IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(11):1675-1685. [18] 姜芃旭, 傅洪亮, 陶华伟, 等.一种基于卷积神经网络特征表征的语音情感识别方法[J].电子器件, 2019, 42(4):998-1001. JIANG P X, FU H L, TAO H W, et al.Feature characterization based on convolution neural networks for speech emotion recognition[J].Chinese Journal of Electron Devices, 2019, 42(4):998-1001.(in Chinese) [19] YI L, MAK M W.Improving speech emotion recognition with adversarial data augmentation network[EB/OL].[2021-02-14].https://www.researchgate.net/publication/346055097_Improving_Speech_Emotion_Recognition_With_Adversarial_Data_Augmentation_Network. [20] WU M, SU W J, CHEN L, et al.Two-stage fuzzy fusion based-convolution neural network for dynamic emotion recognition[EB/OL].[2021-02-14].https://www.researchgate.net/publication/338564019_Two-stage_Fuzzy_Fusion_based-Convolution_Neural_Network_for_Dynamic_Emotion_Recognition. [21] LIU Z T, XIE Q, WU M, et al.Speech emotion recognition based on an improved brain emotion learning model[J].Neurocomputing, 2018, 309:145-156. [22] SUN Y X, WEN G H, WANG J B.Weighted spectral features based on local Hu moments for speech emotion recognition[J].Biomedical Signal Processing and Control, 2015, 18(1):80-90. [23] TAO H W, LIANG R Y, ZHA C, et al.Spectral features based on local Hu moments of Gabor spectrograms for speech emotion recognition[J].IEICE Transactions on Information and Systems, 2016, E99-D(8):2186-2189. [24] 缪裕青, 邹巍, 刘同来, 等.基于参数迁移和卷积循环神经网络的语音情感识别[J].计算机工程与应用, 2019, 55(10):135-140, 198. MIAO Y Q, ZOU W, LIU T L, et al.Speech emotion recognition model based on parameter transfer and convolutional recurrent neural network[J].Computer Engineering and Applications, 2019, 55(10):135-140, 198.(in Chinese) [25] CHEN L, SU W J, WU M, et al.A fuzzy deep neural network with sparse autoencoder for emotional intention understanding in human-robot interaction[J].IEEE Transactions on Fuzzy Systems, 2020, 28(7):1252-1264. [26] WEN G, LI H, HUANG J, et al.Random deep belief networks for recognizing emotions from speech signals[EB/OL].[2021-02-14].http://europepmc.org/article/PMC/5357547. [27] CHEN M Y, HE X J, YANG J, et al.3-D convolutional recurrent neural networks with attention model for speech emotion recognition[J].IEEE Signal Processing Letters, 2018, 25(10):1440-1444. [28] 乔栋, 陈章进, 邓良, 等.改进语音处理的卷积神经网络中文语音情感识别[J].计算机工程, 2022, 48(2):281-290. QIAO D, CHEN Z J, DENG L, et al.Speech emotion recognition based on improved speech processing and convolution neural network[J].Computer Engineering, 2022, 48(2):281-290.(in Chinese) [29] NOROOZI F, MARJANOVIC M, NJEGUS A, et al.Audio-visual emotion recognition in video clips[J].IEEE Transactions on Affective Computing, 2019, 10(1):60-75. |