[1] HU Zhengyi,TAN Qingchang,SUN Qiucheng.RGB-D based indoor scene real-time 3D reconstruction algorithm[J].Journal of Northeastern University (Natural Science),2017,38(12):1764-1768.(in Chinese)胡正乙,谭庆昌,孙秋成.基于RGB-D的室内场景实时三维重建算法[J].东北大学学报(自然科学版),2017,38(12):1764-1768. [2] TIAN Xuan,WANG Liang,DING Qi.Review of image semantic segmentation based on deep learning[J].Journal of Software,2019,30(2):440-468.(in Chinese)田萱,王亮,丁琪.基于深度学习的图像语义分割方法综述[J].软件学报,2019,30(2):440-468. [3] WANG Xin,WU Shiqian,ZOU Mi.Design of robot picking fruit and vegetable system based on with Kinect sensor[J].Journal of Agricultural Mechanization Research,2018,40(10):199-202,207.(in Chinese)王欣,伍世虔,邹谜.基于Kinect的机器人采摘果蔬系统设计[J].农机化研究,2018,40(10):199-202,207. [4] YE Yutong,LI Bijun,FU Liming.Fast object detection and tracking in laser data for autonomous driving[J].Geomatics and Information Science of Wuhan University,2019,44(1):139-144,152.(in Chinese)叶语同,李必军,付黎明.智能驾驶中点云目标快速检测与跟踪[J].武汉大学学报(信息科学版),2019,44(1):139-144,152. [5] XU Ming,ZHAO Rongchun.Solving self-shadow problem of shape from shading in light source projected system[J].Journal of Image and Graphics,2018,23(1):64-68.(in Chinese)须明,赵荣椿.利用光源投影坐标系处理SFS中的自阴影问题[J].中国图象图形学报,2018,23(1):64-68. [6] LV Jinpu.Research on key techniques of 3D shape restoration based on texture information[D].Tianjin:Tiangong University,2011.(in Chinese)吕晋普.基于纹理信息的三维形状恢复关键技术研究[D].天津:天津工业大学,2011. [7] LV Niqi,SONH Guanghua,YANG Bowei.Semi-global stereo matching algorithm based on feature fusion and its CUDA implementation[J].Journal of Image and Graphics,2018,23(6):874-886.(in Chinese)吕倪祺,宋广华,杨波威.特征融合的双目半全局匹配算法及其并行加速实现[J].中国图象图形学报,2018,23(6):874-886. [8] WANG Yunfeng,WU Wei,YU Xiaoliang,et al.A stereo matching system with the adaptive weight AD-Census[J].Journal of Sichuan University(Engineering Science Edition),2018,50(4):153-160.(in Chinese)王云峰,吴炜,余小亮,等.基于自适应权重AD-Census变换的双目立体匹配[J].四川大学学报(工程科学版),2018,50(4):153-160. [9] EIGEN D,PUHRSCH C,FERGUS R.Depth map prediction from a single image using a multi-scale deep network[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2014:2366-2374. [10] EIGEN D,FERGUS R.Predicting depth,surface normals and semantic labels with a common multi-scale convolutional architecture[EB/OL].[2019-09-29].https://arxiv.org/pdf/1411.4734v4.pdf. [11] LAINA I,RUPPRECHT C,BELAGIANNIS V,et al.Deeper depth prediction with fully convolutional residual networks[EB/OL].[2019-09-29].https://arxiv.org/abs/1606.00373. [12] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1-9. [13] LI J,KLEIN R,YAO A.A two-streamed network for estimating fine-scaled depth maps from single RGB images[EB/OL].[2019-09-29].https://arxiv.org/abs/1607.00730. [14] LI Bo,DAI Yuchao,CHEN Huahui,et al.Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference[EB/OL].[2019-09-29].https://arxiv.org/abs/1705.00534. [15] LEE J H,HEO M,KIM K R,et al.Single-image depth estimation based on Fourier domain analysis[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:330-339. [16] LUO W J,SCHWING A G,URTASUN R.Efficient deep learning for stereo matching[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:5695-5703. [17] SHAKED A,WOLF L.Improved stereo matching with constant highway networks and reflective confidence learning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:1-12. [18] KUZNIETSOV Y,STVCKLER J,LEIBE B.Semi-supervised deep learning for monocular depth map prediction[EB/OL].[2019-09-29].https://arxiv.org/abs/1702.02706. [19] YAO Yao,LUO Zixin,LI Shiwei,et al.MVSNet:depth inference for unstructured multi-view stereo[EB/OL].[2019-09-29].https://www.researchgate.net/publica tion/324387746_MVSNet_Depth_Inference_for_Unstructured_Multi-view_Stereo. [20] LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramid networks for object detection[EB/OL].[2019-09-29].https://arxiv.org/abs/1612.03144. [21] SILBERMAN N,HOIEM D,KOHLI P,et al.Indoor segmentation and support inference from RGBD images[M].Berlin,Germany:Springer,2012:746-760. [22] GEIGER A,LENZ P,STILLER C,et al.Vision meets robotics:the KITTI dataset[J].The International Journal of Robotics Research,2013,32(11):1231-1237. [23] CHAKRABARTI A,SHAO J Y,SHAKHNAROVICH G.Depth from a single image by harmonizing overcomplete local network predictions[EB/OL].[2019-09-29].https://arxiv.org/abs/1605.07081. [24] JIA Ruiming,LIU Liqiang,LIU Shengjie,et al.Single image depth estimation based on encoder-decoder convolution neural network[J].Journal of Graphics,2019,40(4):718-724.(in Chinese)贾瑞明,刘立强,刘圣杰,等.基于编解码卷积神经网络的单张图像深度估计[J].图学学报,2019,40(4):718-724. [25] XU D,RICCI E,OUYANG W,et al.Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:5354-5362. [26] GARG R,VIJAY K B G,CARNEIRO G,et al.Unsupervised CNN for single view depth estimation:geometry to the rescue[M].Berlin,Germany:Springer,2016:740-756. [27] WANG C Y,BUENAPOSADA J M,ZHU R,et al.Learning depth from monocular videos using direct methods[EB/OL].[2019-09-29].https://arxiv.org/abs/1712.00175. [28] XU Dan,WANG Wei,TANG Hao,et al.Structured attention guided convolutional neural fields for monocular depth estimation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:3917-3925. [29] LIU F Y,SHEN C H,LIN G S.Deep convolutional neural fields for depth estimation from a single image[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:5162-5170. [30] SHI W Z,CABALLERO J,HUSZÁR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[EB/OL].[2019-09-29].https://arxiv.org/abs/1609.05158. |