1 |
GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2015: 873-881.
|
2 |
XU Q S, KONG W H, TAO W B, et al. Multi-scale geometric consistency guided and planar prior assisted multi-view stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 16 (3): 36- 45.
|
3 |
尹晨阳, 职恒辉, 李慧斌. 基于深度学习的双目立体匹配方法综述. 计算机工程, 2022, 48 (10): 1- 12.
URL
|
|
YIN C Y, ZHI H H, LI H B. Survey of binocular stereo-matching methods based on deep learning. Computer Engineering, 2022, 48 (10): 1- 12.
URL
|
4 |
YAO Y, LUO Z X, LI S W, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 785-801.
|
5 |
GU X D, FAN Z W, ZHU S Y, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2020: 2495-2504.
|
6 |
刘会杰, 柏正尧, 程威, 等. 融合注意力机制和多层U-Net的多视图立体重建. 中国图象图形学报, 2022, 27 (2): 475- 485.
URL
|
|
LIU H J, BAI Z Y, CHENG W, et al. Fusion attention mechanism and multilayer U-Net for multiview stereo. Journal of Image and Graphics, 2022, 27 (2): 475- 485.
URL
|
7 |
YANG J Y, MAO W, ALVAREZ J M, et al. Cost volume pyramid based depth inference for multi-view stereo[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2020: 4877-4886.
|
8 |
GAO S Y, LI Z X, WANG Z Q. Cost volume pyramid network with multi-strategies range searching for multi-view stereo[EB/OL]. [2023-06-05]. https://arxiv.org/abs/2207.12032.
|
9 |
CHENG S, XU Z X, ZHU S L, et al. Deep stereo using adaptive thin volume representation with uncertainty awareness[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2020: 2524-2534.
|
10 |
李剑, 陈宇航. 一种多视角高精度图片的深度估计方法. 北京邮电大学学报, 2021, 44 (5): 101- 106.
URL
|
|
LI J, CHEN Y H. A depth estimation method for multi view and high precision images. Journal of Beijing University of Posts and Telecommunications, 2021, 44 (5): 101- 106.
URL
|
11 |
CAO C, REN X, FU Y. MVSFormer: multi-view stereo with pre-trained Vision Transformers and tempe-rature-based depth[EB/OL]. [2023-06-16]. https://arxiv.org/abs/2208.02541.
|
12 |
|
13 |
YU Z H, GAO S H. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2020: 1949-1958.
|
14 |
PENG R, WANG R J, WANG Z Y, et al. Rethinking depth estimation for multi-view stereo: a unified representation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2022: 8635-8644.
|
15 |
YAO Y, LUO Z X, LI S W, et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2019: 5525-5534.
|
16 |
YANG J Y, ALVAREZ J M, LIU M M. Non-parametric depth distribution modelling based depth inference for multi-view stereo[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2022: 8626-8634.
|
17 |
刘万军, 王俊恺, 曲海成. 多尺度代价体信息共享的多视角立体重建网络. 中国图象图形学报, 2022, 27 (11): 3331- 3342.
URL
|
|
LIU W J, WANG J K, QU H C. Multi-scale cost volumes information sharing based multi-view stereo reconstructed model. Journal of Image and Graphics, 2022, 27 (11): 3331- 3342.
URL
|
18 |
BLEYER M, RHEMANN C, ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]//Proceedings of the British Machine Vision Conference. Washington D. C. , USA: IEEE Press, 2011: 1-11.
|
19 |
|
20 |
CHENG X J, WANG P, YANG R G. Depth estimation via affinity learned with convolutional spatial propagation network[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 108-125.
|
21 |
AANæS H, JENSEN R R, VOGIATZIS G, et al. Large-scale data for multiple-view stereopsis. International Journal of Computer Vision, 2016, 120 (2): 153- 168.
doi: 10.1007/s11263-016-0902-9
|
22 |
KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks and Temples. ACM Transactions on Graphics, 2017, 36 (4): 1- 13.
|
23 |
YAO Y, LUO Z X, LI S W, et al. BlendedMVS: a large-scale dataset for generalized multi-view stereo networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2020: 1790-1799.
|
24 |
|
25 |
FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (8): 1362- 1376.
doi: 10.1109/TPAMI.2009.161
|
26 |
SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2016: 4104-4113.
|
27 |
YU A Z, GUO W Y, LIU B, et al. Attention aware cost volume pyramid based multi-view stereo network for 3D reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175, 448- 460.
doi: 10.1016/j.isprsjprs.2021.03.010
|
28 |
WANG F, GALLIANI S, VOGEL C, et al. PatchmatchNet: learned multi-view patchmatch stereo[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2021: 14194-14203.
|
29 |
XU Q, OSWALD M R, TAO W, et al. Non-local re-current regularization networks for multi-view stereo. IEEE Access, 2021, 6, 132586- 132597.
|
30 |
WEILHARTER R, FRAUNDORFER F. ATLAS-MVSNet: attention layers for feature extraction and cost volume regularization in multi-view stereo[C]//Proceedings of the 26th International Conference on Pattern Recognition. Washington D. C. , USA: IEEE Press, 2022: 3557-3563.
|
31 |
MA X J, GONG Y, WANG Q R, et al. EPP-MVSNet: epipolar-assembling based depth prediction for multi-view stereo[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2021: 5732-5740.
|
32 |
|
33 |
WANG F, GALLIANI S, VOGEL C, et al. IterMVS: iterative probability estimation for efficient multi-view stereo[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2022: 8606-8615.
|
34 |
XI J H, SHI Y F, WANG Y J, et al. RayMVSNet: learning ray-based 1D implicit fields for accurate multi-view stereo[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2022: 8595-8605.
|
35 |
ZHANG X D, YANG F Z, CHANG M, et al. MG-MVSNet: multiple granularities feature fusion network for multi-view stereo. Neurocomputing, 2023, 528, 35- 47.
doi: 10.1016/j.neucom.2023.01.062
|
36 |
LUO K Y, GUAN T, JU L L, et al. P-MVSNet: learning patch-wise matching confidence aggregation for multi-view stereo[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2019: 10452-10461.
|
37 |
CHEN R, HAN S F, XU J, et al. Visibility-aware point-based multi-view stereo network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3695- 3708.
|