1 |
DUGGAL S, WANG S L, MA W C, et al. DeepPruner: learning efficient stereo matching via differentiable PatchMatch[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 4383-4392.
|
2 |
KHAMIS S, FANELLO S, RHEMANN C, et al. StereoNet: guided hierarchical refinement for real-time edge-aware depth prediction[C]//Proceedings of ECCVʼ18. New York, USA: ACM Press, 2018: 596-613.
|
3 |
ZHANG F H, PRISACARIU V, YANG R G, et al. GA-Net: guided aggregation net for end-to-end stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 185-194.
|
4 |
ŽBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1592-1599.
|
5 |
MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and SceneFlow estimation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 4040-4048.
|
6 |
PANG J H, SUN W X, REN J S, et al. Cascade residual learning: a two-stage convolutional neural network for stereo matching[C]//Proceedings of IEEE International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2018: 878-886.
|
7 |
KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 66-75.
|
8 |
TANKOVICH V, HÄNE C, ZHANG Y D, et al. HITNet: hierarchical iterative tile refinement network for real-time stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 14357-14367.
|
9 |
HIRSCHMULLER H. Accurate and efficient stereo processing by semi-global matching and mutual information[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005: 807-814.
|
10 |
CHENG X L, ZHONG Y R, HARANDI M, et al. Hierarchical neural architecture search for deep stereo matching[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 22158-22169.
|
11 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 3354-3361.
|
12 |
CHEN R, HAN S F, XU J, et al. Point-based multi-view stereo network[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 1538-1547.
|
13 |
GU X D, FAN Z W, ZHU S Y, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2492-2501.
|
14 |
YU Z H, GAO S H. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and Gauss-Newton refinement[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1946-1955.
|
15 |
LI Y H, YAO T, PAN Y W, et al. Contextual transformer networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1489- 1500.
|
16 |
LI X, WANG W H, HU X L, et al. Selective kernel networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 510-519.
|
17 |
CHANG J R, CHANG P C, CHEN Y S. Attention-aware feature aggregation for real-time stereo matching on edge devices[C]// Proceedings of ACCVʼ20. Berlin, Germany: Springer, 2021: 365-380.
|
18 |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5686-5696.
|
19 |
DISTANCES C M S. Fast computation of graph kernels[C]//Proceedings of Advances in Neural Information Processing Systems. [S. 1. ]: MIT Press, 2007: 2292-2300.
|
20 |
XU H F, ZHANG J Y. AANet: adaptive aggregation network for efficient stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1956-1965.
|
21 |
LI Z S, LIU X T, DRENKOW N, et al. Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 6177-6186.
|
22 |
SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: learning feature matching with graph neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 4937-4946.
|
23 |
YANG M L, WU F R, LI W. RLStereo: real-time stereo matching based on reinforcement learning. IEEE Transactions on Image Processing, 2021, 30(7): 9442- 9455.
|
24 |
WANG Q, SHI S H, ZHENG S Z, et al. FADNet: a fast and accurate network for disparity estimation[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2020: 101-107.
|