[1] EIGEN D, PUHRSCH C, FERGUS R.Depth map prediction from a single image using a multi-scale deep network[EB/OL].[2022-02-18].http://de.arxiv.org/pdf/1406.2283. [2] LIU F Y, SHEN C H, LIN G S.Deep convolutional neural fields for depth estimation from a single image[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:5162-5170. [3] LI B, SHEN C H, DAI Y C, et al.Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1119-1127. [4] LAINA I, RUPPRECHT C, BELAGIANNIS V, et al.Deeper depth prediction with fully convolutional residual networks[C]//Proceedings of the 4th International Conference on 3D Vision.Washington D.C., USA:IEEE Press, 2016:239-248. [5] GARG R, VIJAY KUMAR B G, CARNEIRO G, et al.Unsupervised CNN for single view depth estimation:geometry to the rescue[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:740-756. [6] GODARD C, AODHA O M, FIRMAN M, et al.Digging into self-supervised monocular depth estimation[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:3827-3837. [7] GUIZILINI V, AMBRUS R, PILLAI S, et al.3D packing for self-supervised monocular depth estimation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2482-2491. [8] 王亚群, 戴华林, 王丽, 等.基于密集卷积网络的单目图像深度估计方法[J].计算机工程, 2021, 47(11):262-267, 291. WANG Y Q, DAI H L, WANG L, et al.Method for estimating monocular image depth based on dense convolutional network[J].Computer Engineering, 2021, 47(11):262-267, 291.(in Chinese) [9] VIJAYANARASIMHAN S, RICCO S, SCHMID C, et al.SfM-Net:learning of structure and motion from video[EB/OL].[2022-02-18].https://arxiv.org/pdf/1704.07804.pdf. [10] ALBARQOUNI S, KONRAD U, WANG L C, et al.Single-view X-ray depth recovery:toward a novel concept for image-guided interventions[J].International Journal of Computer Assisted Radiology and Surgery, 2016, 11(6):873-880. [11] HU J, SHEN L, ALBANIE S, et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [12] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[EB/OL].[2022-02-18].https://arxiv.org/pdf/1807.06521.pdf. [13] YANG Z H, WANG P, XU W, et al.Unsupervised learning of geometry with edge-aware depth-normal consistency[EB/OL].[2022-02-18].https://arxiv.org/pdf/1711.03665.pdf. [14] JOHNSTON A, CARNEIRO G.Self-supervised monocular trained depth estimation using self-attention and discrete disparity volume[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:4755-4764. [15] LIU S T, HUANG D, WANG Y H.Learning spatial fusion for single-shot object detection[EB/OL].[2022-02-18].https://arxiv.org/abs/1911.09516v1. [16] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9):1904-1916. [17] ZHAO H S, SHI J P, QI X J, et al.Pyramid scene parsing network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:6230-6239. [18] LIU W, RABINOVICH A, BERG A C.ParseNet:looking wider to see better[EB/OL].[2022-02-18].https://arxiv.org/pdf/1506.04579.pdf. [19] WU J W, ZHOU W J, LUO T, et al.Multiscale multilevel context and multimodal fusion for RGB-D salient object detection[J].Signal Processing, 2021, 178:107766. [20] 王子, 吴振宇.SFM算法在无人机航拍影像中的应用研究[J].科技创新与生产力, 2021(8):104-107. WANG Z, WU Z Y.Application of SFM algorithm in UAV aerial photography[J].Sci-Tech Innovation and Productivity, 2021(8):104-107.(in Chinese) [21] ZHAN H Y, GARG R, WEERASEKERA C S, et al.Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:340-349. [22] 龙霄潇, 程新景, 朱昊, 等.三维视觉前沿进展[J].中国图象图形学报, 2021, 26(6):1389-1428. LONG X X, CHENG X J, ZHU H, et al.Recent progress in 3D vision[J].Journal of Image and Graphics, 2021, 26(6):1389-1428.(in Chinese) [23] GEIGER A, LENZ P, STILLER C, et al.Vision meets robotics:the KITTI dataset[J].The International Journal of Robotics Research, 2013, 32(11):1231-1237. [24] ZHOU T H, BROWN M, SNAVELY N, et al.Unsupervised learning of depth and ego-motion from video[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6612-6619. [25] 朱照飞, 刘伟.基于改进的SURF特征点的双目测距[J].电子测量技术, 2018, 41(12):133-138. ZHU Z F, LIU W.Binocular distance measurement based on improved SURF feature points[J].Electronic Measurement Technology, 2018, 41(12):133-138.(in Chinese) [26] MAHJOURIAN R, WICKE M, ANGELOVA A.Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:5667-5675. [27] YIN Z C, SHI J P.GeoNet:unsupervised learning of dense depth, optical flow and camera pose[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1983-1992. [28] ZOU Y L, LUO Z L, HUANG J B.DF-Net:unsupervised joint learning of depth and flow using cross-task consistency[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:38-55. [29] CASSER V, PIRK S, MAHJOURIAN R, et al.Depth prediction without the sensors:leveraging structure for unsupervised learning from monocular videos[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2019:8001-8008. |