[1] MORRIS B, TRIVEDI M M.Learning trajectory patterns by clustering:experimental studies and comparative evaluation[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2009:312-319. [2] SOLEIMANY G, ABESSI M.A new similarity measure for time series data mining based on longest common subsequence[J]. Journal of Data Mining and Knowledge Discovery, 2019, 4(1): 32-45. [3] FU T C.A review on time series data mining[J]. Engineering Application of Artificial Intelligence, 2012, 24(1): 164-181. [4] ZHOU P Y, CHAN K C C.A feature extraction method for multivariate time series classification using temporal patterns[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining.Berlin, Germany:Springer, 2015:409-421. [5] CAO D Y, LIU J.Research on dynamic time warping multivariate time series similarity matching based on shape feature and inclination angle[J]. Journal of Cloud Computing, 2016, 5(1): 1-11. [6] 李海林, 梁叶, 王少春.时间序列数据挖掘中的动态时间弯曲研究综述[J]. 控制与决策, 2018, 33(8): 1345-1353. LI H L, LIANG Y, WANG S C.A review of research on dynamic time warping in time series data mining[J]. Control and Decision, 2018, 33(8): 1345-1353.(in Chinese) [7] LIU L, LI W, JIA H.Method of time series similarity measurement based on dynamic time warping[J]. Computers Materials & Continua, 2018, 57(1): 97-106. [8] ZHOU K Y, HU S.An improved morphological weighted dynamic similarity measurement algorithm for time series data[J]. International Journal of Intelligent Computing and Cybernetics, 2018, 11(4): 486-495. [9] AGRAWAL R, FALOUTSOS C, SWAMI A.Efficient similarity search in sequence databases[C]//Proceedings of International Conference on Foundations of Data Organization and Algorithms.Chicago, USA:[s.n.], 1993:69-84. [10] BERNDT D J, CLIFFORD J.Using dynamic time warping to find patterns in time series[C]//Proceedings of International Conference on Knowledge Discovery in Databases.Seattle, USA:[s.n.], 1994:229-248. [11] 李正欣, 张凤鸣, 李克武.多元时间序列模式匹配方法研究[J]. 控制与决策, 2011, 26(4): 565-570. LI Z X, ZHANG F M, LI K W.Research on pattern matching method of multivariate time series[J]. Control and Decision, 2011, 26(4): 565-570.(in Chinese) [12] 李正欣, 郭建胜, 毛红保, 等. 多元时间序列相似性度量方法[J]. 控制与决策, 2017, 32(2): 368-372. LI Z X, GUO J S, MAO H B, et al. Similarity measurement method of multivariate time series[J]. Control and Decision, 2017, 32(2): 368-372.(in Chinese) [13] 邢邗, 石晓达, 孙连英, 等. 时间序列数据趋势转折点提取算法[J]. 计算机工程, 2018, 44(1): 56-61, 68. XING H, SHI X D, SUN L Y, et al. Trend turning point extraction algorithm for Time series data[J]. Computer Engineering, 2018, 44(1): 56-61, 68.(in Chinese) [14] AMEUR S, KHALIFA A B, BOUHLEL M S.Chronological pattern indexing:an efficient feature extraction method for hand gesture recognition with leap motion[J]. Journal of Visual Communication and Image Representation, 2020, 70:102-116. [15] LI Z, LI K, WU H, et al. Similarity measure for multivariate time series based on dynamic time warping[C]//Proceedings of IEEE International Conference on Intelligent Information Processing.Washington D.C., USA:IEEE Press, 2016:158-169. [16] 孙焕良, 邱邦华, 魏溯华.一种优化的自底向上时间序列分段算法[J]. 沈阳建筑大学学报(自然科学版), 2007, 23(6): 1049-1052. SUN H L, QIU B H, WEI S H.An optimized bottom-up time series segmentation algorithm[J]. Journal of Shenyang Jianzhu University(Natural Science Edition), 2007, 23(6): 1049-1052.(in Chinese) [17] MOHAMME D, WALEE D, KADOU S.High-quality recordings of Australian sign language signs[EB/OL]. [2020-06-01]. http://kdd.ics.uci.edu/databases/auslan2/auslan.html. [18] BEGLEITER H.EEG database[EB/OL]. [2020-06-01]. http://kdd.ics.uci.edu/databases/eeg/eeg.html. [19] LOPES L S, LUIS M.Robot execution failures[EB/OL]. [2020-06-01]. http://kdd.ics.uci.edu/data-bases/robotfailure/robotfailure.html, 2020. [20] KUDO M, JUN T, SHIMBO M.Japanese vowels[EB/OL]. [2020-06-01]. http://kdd.ics.uci.edu/databases/JapaneseVowels/JapaneseVowels.html. |