[1] 黄超.基于特征分析的金融时间序列挖掘若干关键问题研究[D].上海:复旦大学, 2005. HUANG C.Research on several key issues in financial time series mining based on feature analysis[D].Shanghai:Fudan University, 2005.(in Chinese) [2] SAXENA H, ANURAG A V, CHIRAYATH N, et al.Stock prediction using ARMA[J].International Journal of Engineering and Management Research, 2018, 8(2):1-4. [3] 高飞翔.心电时间序列的表示方法和相似性度量问题研究[D].哈尔滨:哈尔滨工业大学, 2014. GAO F X.Research on representation methods and similarity measures of ECG time series[D].Harbin:Harbin Institute of Technology, 2014.(in Chinese) [4] 史明阳, 王鹏, 汪卫.有监督时间序列分割与状态识别算法[J].计算机工程, 2020, 46(5):131-138. SHI M Y, WANG P, WANG W.Algorithm of supervised time series segmentation and state recognition[J].Computer Engineering, 2020, 46(5):131-138.(in Chinese) [5] WANG P, WANG H X, WANG W.Finding semantics in time series[C]//Proceedings of 2011 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2011:385-396. [6] EDDY S R.What is a hidden Markov model?[J].Nature Biotechnology, 2004, 22(10):1315-1316. [7] MATSUBARA Y, SAKURAI Y, FALOUTSOS C.AutoPlait:automatic mining of co-evolving time sequences[C]//Proceedings of 2014 ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2014:193-204. [8] KAWABATA K, MATSUBARA Y, SAKURAI Y.StreamScope:automatic pattern discovery over data streams[C]//Proceedings of the 1st International Workshop on Exploiting Artificial Intelligence Techniques for Data Management.New York, USA:ACM Press, 2018:1-8. [9] GRÜNWALD P D.The minimum description length principle[M].Cambridge, USA:MIT Press, 2007. [10] GUI J, ZHENG Z, QIN Z, et al.An approach to extract state information from multivariate time series[J].Journal of Computers, 2020, 31(6):1-11. [11] HONDA T, MATSUBARA Y, NEYAMA R, et al.Multi-aspect mining of complex sensor sequences[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C., USA.IEEE Press, 2019:299-308. [12] MUEEN A, KEOGH E.Online discovery and maintenance of time series motifs[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2010:1089-1098. [13] TOYODA M, SAKURAI Y, ISHIKAWA Y.Pattern discovery in data streams under the time warping distance[J].The VLDB Journal, 2013, 22(3):295-318. [14] 原继东, 王志海, 韩萌.基于Shapelet剪枝和覆盖的时间序列分类算法[J].软件学报, 2015, 26(9):2311-2325. YUAN J D, WANG Z H, HAN M.Shapelet pruning and Shapelet coverage for time series classification[J].Journal of Software, 2015, 26(9):2311-2325.(in Chinese) [15] GHARGHABI S, DING Y F, YEH C C M, et al.Matrix profile VIII:domain agnostic online semantic segmentation at superhuman performance levels[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2017:117-126. [16] GHARGHABI S, YEH C C M, DING Y F, et al.Domain agnostic online semantic segmentation for multi-dimensional time series[J].Data Mining and Knowledge Discovery, 2019, 33(1):96-130. [17] DELDARI S, SMITH D V, SADRI A, et al.ESPRESSO:entropy and shape aware time-series segmentation on for processing heterogeneous sensor data[EB/OL].[2021-08-11].https://arxiv.org/abs/2008.03230v1. [18] YEH C C M, ZHU Y, ULANOVA L, et al.Matrix profile I:all pairs similarity joins for time series:a unifying view that includes motifs, discords and Shapelets[C]//Proceedings of the 16th International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2016:1317-1322. [19] BRACEWELL R N.The Fourier transform and its applications[M].New York, USA:McGraw-Hill, 1986. [20] BIRANT D, KUT A.ST-DBSCAN:an algorithm for clustering spatial-temporal data[J].Data & Knowledge Engineering, 2007, 60(1):208-221. [21] 范子静, 罗泽, 马永征.一种基于模糊核聚类的谱聚类算法[J].计算机工程, 2017, 43(11):161-165, 172. FAN Z J, LUO Z, MA Y Z.A spectral clustering algorithm based on fuzzy kernel clustering[J].Computer Engineering, 2017, 43(11):161-165, 172.(in Chinese) [22] HARTIGAN J A, WONG M A.Algorithm AS 136:a k-means clustering algorithm[J].Applied Statistics, 1979, 28(1):100-108. [23] REISS A, STRICKER D.Towards global aerobic activity monitoring[C]//Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments.Washington D.C., USA.IEEE Press, 2011:1-8. [24] REISS A, WEBER M, STRICKER D.Exploring and extending the boundaries of physical activity recognition[C]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics.Washington D.C., USA:IEEE Press, 2011:46-50. [25] MILLIGAN G W, COOPER M C.A study of the comparability of external criteria for hierarchical cluster analysis[J].Multivariate Behavioral Research, 1986, 21(4):441-458. |