作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (11): 108-120. doi: 10.19678/j.issn.1000-3428.0059468

• 人工智能与模式识别 • 上一篇    下一篇

基于LDTW的动态时间规整改进算法

夏寒松, 张力生, 桑春艳   

  1. 重庆邮电大学 软件工程学院, 重庆 400065
  • 收稿日期:2020-09-08 修回日期:2020-11-18 发布日期:2020-11-27
  • 作者简介:夏寒松(1996-),男,硕士研究生,主研方向为数据挖掘;张力生,教授;桑春艳,讲师、博士。
  • 基金资助:
    重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0588)。

Improved Algorithm of Dynamic Time Warping Based on LDTW

XIA Hansong, ZHANG Lisheng, SANG Chunyan   

  1. College of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2020-09-08 Revised:2020-11-18 Published:2020-11-27

摘要: 限制对齐路径长度的动态时间规整(LDTW)算法存在时间复杂度高和计算量大的问题。基于LDTW算法提出固定对齐路径长度的动态时间规整(FDTW)算法。通过调整LDTW算法中对齐路径长度的控制策略,由控制在某个区间改为固定到某个具体值,相应缩减累计代价矩阵中元素的计算范围。在UCR时间序列数据集上的实验结果表明,FDTW与LDTW算法的分类准确率持平,但FDTW算法在分类过程中的时间开销更小,并且能有效降低累计代价矩阵元素的计算量,提高计算效率。

关键词: 动态时间规整, 时间序列, 相似性度量, 对齐路径, 最近邻分类

Abstract: Dynamic Time Warping Under Limited Warping Path Length(LDTW) is an algorithm constructed based on the Dynamic Time Warping(DTW) algorithm,and solves the problem of matching points without similarity in DTW,but it tends to be computationally heavy due to the high time complexity.To address the problem,an algorithm called Dynamic Time Warping Under Fixed Warping Path Length(FDTW) is proposed.The strategy of controlling the alignment path length in the LDTW algorithm is adjusted,making the length fixed to a certain value rather than vary in an interval.Then the computing range of the elements in the cumulative cost matrix is narrowed accordingly.Experimental results on a time series data set,UCR,show that the classification accuracy of FDTW is equal to that of LDTW,but the time required by the classification process of FDTW is lower.FDTW can significantly reduce the calculations of elements in the cumulative cost matrix,and improve the computational efficiency.

Key words: Dynamic Time Warping(DTW), time series, similarity measurement, alignment path, nearest neighbor classification

中图分类号: