1 |
任守纲, 张景旭, 顾兴健, 等. 时间序列特征提取方法研究综述. 小型微型计算机系统, 2021, 42(2): 271- 278.
doi: 10.3969/j.issn.1000-1220.2021.02.009
|
|
REN S G, ZHANG J X, GU X J, et al. Overview of feature extraction algorithms for time series. Journal of Chinese Computer Systems, 2021, 42(2): 271- 278.
doi: 10.3969/j.issn.1000-1220.2021.02.009
|
2 |
BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Palo Alto, USA: AAAI Press, 1994: 359-370.
|
3 |
CHENG H. An image-to-class dynamic time warping approach for both 3D static and trajectory hand gesture recognition. Pattern Recognition, 2016, 55, 137- 147.
doi: 10.1016/j.patcog.2016.01.011
|
4 |
KUANG Y Q, CHENG H, HAO J S, et al. Multi-modal gesture recognition with voting-based dynamic time warping. International Journal of Advanced Robotic Systems, 2019, 16(6): 1- 10.
|
5 |
OKAWA M. Online signature verification using single-template matching with time-series averaging and gradient boosting. Pattern Recognition, 2020, 102(C): 107227.
|
6 |
PARZIALE A, DIAZ M, FERRER M A. SM-DTW: stability modulated dynamic time warping for signature verification. Pattern Recognition Letters, 2019, 121, 113- 122.
doi: 10.1016/j.patrec.2018.07.029
|
7 |
YASSEEN Z, VERROUST-BLONDET A, NASRI A. Shape matching by part alignment using extended chordal axis transform. Pattern Recognition, 2016, 57(C): 115- 135.
|
8 |
WANG M, ZHU M. Time series analysis of air traffic flow based on complex network theory. Aeronautical Computing Technique, 2020, 50(5): 61- 65.
|
9 |
CAO Y Q. A real-time spike classification method based on dynamic time warping for extracellular enteric neural recording with large waveform variability. Journal of Neuroscience Methods, 2016, 261, 97- 109.
doi: 10.1016/j.jneumeth.2015.12.006
|
10 |
SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43- 49.
doi: 10.1109/TASSP.1978.1163055
|
11 |
HAVIANA S F C. Sistem gesture accelerometer dengan metode Fast Dynamic Time Warping(FastDTW). Journal Sistem Informasi Bisnis, 2016, 5(2): 151- 160.
|
12 |
KEOGH E, RATANAMAHATANA C A. Exact indexing of dynamic time warping. Knowledge and Information Systems, 2005, 7(3): 358- 386.
doi: 10.1007/s10115-004-0154-9
|
13 |
LEMIRE D. Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recognition, 2009, 42(9): 2169- 2180.
doi: 10.1016/j.patcog.2008.11.030
|
14 |
GEOFFREY I W, FRANÇOIS P. Tight lower bounds for dynamic time warping. Pattern Recognition, 2021, 115(C): 107895.
|
15 |
LAHRECHE A, BOUCHEHAM B. A fast and accurate similarity measure for long time series classification based on local extrema and dynamic time warping. Expert Systems with Applications, 2021, 168, 114374.
doi: 10.1016/j.eswa.2020.114374
|
16 |
GE L, CHEN S. Exact dynamic time warping calculation for weak sparse time series. Applied Soft Computing, 2020, 96, 106631.
doi: 10.1016/j.asoc.2020.106631
|
17 |
JEONG Y S, JEONG M K, OMITAOMU O A. Weighted dynamic time warping for time series classification. Pattern Recognition, 2011, 44(9): 2231- 2240.
doi: 10.1016/j.patcog.2010.09.022
|
18 |
LI H L. Time works well: dynamic time warping based on time weighting for time series data mining. Information Sciences, 2021, 547, 592- 608.
doi: 10.1016/j.ins.2020.08.089
|
19 |
LI H H, LÜ J X, YANG Z L, et al. Adaptively constrained dynamic time warping for time series classification and clustering. Information Sciences, 2020, 534, 97- 116.
doi: 10.1016/j.ins.2020.04.009
|
20 |
ZHAO J P, ITTI L. shapeDTW: shape dynamic time warping. Pattern Recognition, 2018, 74, 171- 184.
doi: 10.1016/j.patcog.2017.09.020
|
21 |
KEOGH E J, PAZZANI M J. Derivative dynamic time warping[C]//Proceedings of 2001 SIAM International Conference on Data Mining. Philadelphia, USA: SIAM, 2001: 1-11.
|
22 |
HONG J Y, PARK S, BAEK J G. SSDTW: shape segment dynamic time warping. Expert Systems with Applications, 2020, 150(C): 113291.
|
23 |
MA D L, ZHANG Y L. Time series piecewise linear representation based on trend feature points[C]//Proceedings of the 8th International Conference on Green Intelligent Transportation Systems and Safety. Washington D. C., USA: IEEE Press, 2017: 19-28.
|
24 |
ABANDA A, MORI U, LOZANO J A. A review on distance based time series classification. Data Mining and Knowledge Discovery, 2019, 33(2): 378- 412.
doi: 10.1007/s10618-018-0596-4
|
25 |
|
26 |
BATISTA G E, WANG X, KEOGH E J. A complexity-invariant distance measure for time series[C]//Proceedings of 2011 SIAM International Conference on Data Mining. Philadelphia, USA: SIAM, 2011: 699-710.
|