1 |
KAUR R, KAUR A. Digital signature[C]//Proceedings of the International Conference on Computing Sciences. Washington D. C., USA: IEEE Press, 2012: 295-301.
|
2 |
BRAUNSTEIN S L, VAN LOOCK P. Quantum information with continuous variables. Reviews of Modern Physics, 2005, 77 (2): 513- 577.
doi: 10.1103/RevModPhys.77.513
|
3 |
BERNSTEIN D J, LANGE T. Post-quantum cryptography. Nature, 2017, 549, 188- 194.
doi: 10.1038/nature23461
|
4 |
|
5 |
HOWE J, PREST T, APON D. SoK: how (not) to design and implement post-quantum cryptography[C]//Proceedings of Cryptographers' Track at the RSA Conference. Berlin, Germany: Springer, 2021: 444-477.
|
6 |
FOUQUE P A, HOFFSTEIN J, KIRCHNER P, et al. Falcon: fast-Fourier lattice-based compact signatures over NTRU. Submission to the NIST's post-quantum cryptography standardization process, 2018, 36 (5): 1- 10.
|
7 |
SONI D, BASU K, NABEEL M, et al. Hardware architectures for post-quantum digital signature schemes. Berlin, Germany: Springer, 2021.
|
8 |
LEE W K, ZHAO R K, STEINFELD R, et al. High throughput lattice-based signatures on GPUs: comparing falcon and mitaka. IEEE Transactions on Parallel and Distributed Systems, 2024, 35 (4): 675- 692.
doi: 10.1109/TPDS.2024.3367319
|
9 |
何诗洋, 李晖, 李凤华. 面向格基密码体制的高效硬件实现研究综述. 密码学报, 2021, 8 (6): 1019- 1038.
URL
|
|
HE S Y, LI H, LI F H. A survey on high-efficiency hardware implementation for lattice-based cryptosystem. Journal of Cryptologic Research, 2021, 8 (6): 1019- 1038.
URL
|
10 |
曹元, 陆旭, 吴彦泽, 等. 后量子加密算法的硬件实现综述. 信息安全学报, 2021, 6 (6): 1- 16.
URL
|
|
CAO Y, LU X, WU Y Z, et al. The survey of post-quantum cryptography hardware implementation. Journal of Cyber Security, 2021, 6 (6): 1- 16.
URL
|
11 |
李斌, 陈晓杰, 冯峰, 等. 后量子密码CRYSTALS-Kyber的FPGA多路并行优化实现. 通信学报, 2022, 43 (2): 196- 207.
URL
|
|
LI B, CHEN X J, FENG F, et al. FPGA multi-unit parallel optimization and implementation of post-quantum cryptography CRYSTALS-Kyber. Journal on Communications, 2022, 43 (2): 196- 207.
URL
|
12 |
张贺, 王鹏, 李思照. 基于格的后量子密码系统研究. 无线电工程, 2022, 52 (8): 1310- 1321.
URL
|
|
ZHANG H, WANG P, LI S Z. Research on lattice-based post-quantum cryptosystem. Radio Engineering, 2022, 52 (8): 1310- 1321.
URL
|
13 |
杨嘉宇. 抗量子密码的研究与应用[D]. 西安: 西安电子科技大学, 2021.
|
|
YANG J Y. Research and application of anti quantum cryptography[D]. Xi'an: Xidian University, 2021. (in Chinese)
|
14 |
吴玉鹏. 基于NewHope协议的后量子密码算法芯片的研究与设计[D]. 济南: 山东大学, 2021.
|
|
WU Y P. Research and design of post-quantum cryptography algorithm chip based on NewHope protocol[D]. Jinan: Shandong University, 2021. (in Chinese)
|
15 |
易海博. 有限域运算和多变量公钥密码硬件的优化和设计[D]. 广州: 华南理工大学, 2015.
|
|
YI H B. Design and improvement of finite field arithmetic and multivariate public key cryptographic hardware[D]. Guangzhou: South China University of Technology, 2015. (in Chinese)
|
16 |
郭丽敏, 刘丹, 王立辉, 等. 一种适合资源受限设备的Falcon实现. 微电子学与计算机, 2020, 37 (9): 50-55, 61.
URL
|
|
GUO L M, LIU D, WANG L H, et al. A practical implementation of the signature scheme Falcon suited for memory constrained device. Microelectronics & Computer, 2020, 37 (9): 50-55, 61.
URL
|
17 |
LEE K, GOWANLOCK M, CAMBOU B. SABER-GPU: a response-based cryptography algorithm for SABER on the GPU[C]//Proceedings of the 26th Pacific Rim International Symposium on Dependable Computing (PRDC). Washington D. C., USA: IEEE Press, 2021: 123-132.
|
18 |
GUPTA N, JATI A, CHAUHAN A K, et al. PQC acceleration using GPUs: FrodoKEM, NewHope, and Kyber. IEEE Transactions on Parallel and Distributed Systems, 2021, 32 (3): 575- 586.
doi: 10.1109/TPDS.2020.3025691
|
19 |
WAN L P, ZHENG F Y, FAN G, et al. A novel high-performance implementation of CRYSTALS-kyber with AI accelerator[C]//Proceedings of European Symposium on Research in Computer Security. Berlin, Germany: Springer, 2022: 514-534.
|
20 |
LEE W K, HWANG S O. High throughput implementation of post-quantum key encapsulation and decapsulation on GPU for Internet of Things applications. IEEE Transactions on Services Computing, 2022, 15 (6): 3275- 3288.
doi: 10.1109/TSC.2021.3103956
|
21 |
WRIGHT J, GOWANLOCK M, PHILABAUM C, et al. A CRYSTALS-dilithium response-based cryptography engine using GPGPU[C]//Proceedings of the Future Technologies Conference. Berlin, Germany: Springer, 2022: 32-45.
|
22 |
SEO S C, AN S. Parallel implementation of CRYSTALS-Dilithium for effective signing and verification in autonomous driving environment. ICT Express, 2023, 9 (1): 100- 105.
doi: 10.1016/j.icte.2022.08.003
|
23 |
SUN S Z, ZHANG R, MA H. Efficient parallelism of post-quantum signature scheme SPHINCS. IEEE Transactions on Parallel and Distributed Systems, 2020, 31 (11): 2542- 2555.
doi: 10.1109/TPDS.2020.2995562
|