王振华, 李静, 张鑫月, 郑宗生, 卢鹏, 栾奎峰
目标识别是计算机视觉领域的一大挑战,随着深度学习的发展,目标识别算法被广泛应用于视频数据中目标的识别和监测。对现有目标识别算法进行归纳,根据是否采用锚点机制将主流算法分为Anchor-Based和Anchor-Free两大类。针对R-CNN、SPP-Net、SSD、YOLOv2等Anchor-Based类目标识别算法,从候选框创建、特征提取和结果生成角度分析基于区域和基于回归的目标识别算法的区别和各自优势。针对CornerNet、ExtremeNet、CenterNet、FCOS等Anchor-Free类目标识别算法,从特征提取、关键点选择/层次结构和结果生成角度分析基于关键点和基于特征金字塔的目标识别算法的区别和各自优势。在此基础上,以识别效率和识别精度为评价指标,对Faster R-CNN、Mask R-CNN、SSD等8种代表性目标识别算法进行对比总结。最后,针对目标识别算法中的数据预处理耗时长、多尺度特征同步识别精度低、结构繁杂等问题,对当前研究的不足和未来研究方向进行分析和展望。