[1] ABBAS N, ZHANG Y, TAHERKORDI A, et al.Mobile edge computing:a survey[J].IEEE Internet of Things Journal, 2018, 5(1):450-465. [2] MUKHERJEE A, DE D, GHOSH S K, et al.Mobile edge computing[M].Berlin, Germany:Springer, 2021. [3] 陈璐, 汤红波, 游伟, 等.移动边缘计算安全防御研究[J].网络与信息安全学报, 2021, 7(1):130-142. CHEN L, TANG H B, YOU W, et al.Research on security defense of mobile edge computing[J].Chinese Journal of Network and Information Security, 2021, 7(1):130-142.(in Chinese) [4] 赵星, 彭建华, 陈璐, 等.一种MEC中隐私保护计算卸载方法[J].信息工程大学学报, 2020, 21(6):641-646. ZHAO X, PENG J H, CHEN L, et al.Privacy-preserving computation offloading method of multi-access edge computing[J].Journal of Information Engineering University, 2020, 21(6):641-646.(in Chinese) [5] 工业互联网产业联盟, 中国移动, 中国信通院.5G边缘计算安全白皮书[EB/OL].(2020-11)[2021-05-06].http://aii-alliance.org/bps/20210202/4552.html. Alliance of Industrial Internet, China Mobile, China Academy of Information and Communications Technology.5G edge computing security white paper[EB/OL].(2020-11)[2021-05-06].http://aii-alliance.org/bps/20210202/4552.html. (in Chinese) [6] Haystax.Haystax insider threat report 2019[EB/OL].[2021-05-06].https://haystax.com/wp-content/uploads/2019/07/Haystax-Insider-Threat-Report-2019.pdf. [7] 边缘计算产业联盟, 工业互联网产业联盟.边缘计算安全白皮书[EB/OL].[2021-05-06].http://www.ecconsortium.net/Lists/show/id/374.html. Edge Computing Consortium, Alliance of Industrial Internet.Edge computing security white paper[EB/OL].[2021-05-06].http://www.ecconsortium.net/Lists/show/id/374.html. (in Chinese) [8] XIN Y, KONG L S, LIU Z, et al.Machine learning and deep learning methods for cybersecurity[J].IEEE Access, 2018, 6:35365-35381. [9] CHEN J S, RAN X K.Deep learning with edge computing:a review[J].Proceedings of the IEEE, 2019, 107(8):1655-1674. [10] CHANDOLA V, BANERJEE A, KUMAR V.Anomaly detection[J].ACM Computing Surveys, 2009, 41(3):1-58. [11] FIORE U, PALMIERI F, CASTIGLIONE A, et al.Network anomaly detection with the restricted Boltzmann machine[J].Neurocomputing, 2013, 122:13-23. [12] SINGH M, MEHTRE B M, SANGEETHA S.User behavior profiling using ensemble approach for insider threat detection[C]//Proceedings of the 5th International Conference on Identity, Security, and Behavior Analysis.Washington D.C, USA:IEEE Press, 2019:1-8. [13] LEE S J, YOO P D, ASYHARI A T, et al.IMPACT:impersonation attack detection via edge computing using deep autoencoder and feature abstraction[J].IEEE Access, 2020, 8:65520-65529. [14] ESKANDARI M, JANJUA Z H, VECCHIO M, et al.Passban IDS:an intelligent anomaly-based intrusion detection system for IoT edge devices[J].IEEE Internet of Things Journal, 2020, 7(8):6882-6897. [15] FERNÁNDEZ M L, PERALES G L, GARCÍA C F J, et al.A self-adaptive deep learning-based system for anomaly detection in 5G networks[J].IEEE Access, 2018, 6:7700-7712. [16] AN X S, ZHOU X W, LÜ X, et al.Sample selected extreme learning machine based intrusion detection in fog computing and MEC[J].Wireless Communications and Mobile Computing, 2018, 2018:1-10. [17] SIDDIQUE K, AKHTAR Z, KHAN F A, et al.KDD Cup 99 data sets:a perspective on the role of data sets in network intrusion detection research[J].Computer, 2019, 52(2):41-51. [18] HUSSAIN B, DU Q H, ZHANG S H, et al.Mobile edge computing-based data-driven deep learning framework for anomaly detection[J].IEEE Access, 2019, 7:137656-137667. [19] HUSSAIN B, DU Q H, IMRAN A, et al.Artificial intelligence-powered mobile edge computing-based anomaly detection in cellular networks[J].IEEE Transactions on Industrial Informatics, 2020, 16(8):4986-4996. [20] 周志华.机器学习[M].北京:清华大学出版社, 2016. ZHOU Z H.Machine learning[M].Beijing:Tsinghua University Press, 2016.(in Chinese) [21] PERERA P, OZA P, PATEL V M.One-class classification:a survey[EB/OL].(2021-01-08)[2021-05-06].https://arxiv.org/pdf/2101.03064v1.pdf. [22] LIU F T, TING K M, ZHOU Z H.Isolation-based anomaly detection[J].ACM Transactions on Knowledge Discovery from Data, 2012, 6(1):1-39. [23] AHARONY N, PAN W, IP C, et al.Social fMRI:investigating and shaping social mechanisms in the real world[J].Pervasive and Mobile Computing, 2011, 7(6):643-659. [24] GOETZ J N, BRENNING A, PETSCHKO H, et al.Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling[J].Computers & Geosciences, 2015, 81:1-11. |