作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (5): 18-26. doi: 10.19678/j.issn.1000-3428.0061041

• 热点与综述 • 上一篇    下一篇

一种结合深度学习的运动重检测视觉SLAM算法

房立金, 王科棋   

  1. 东北大学 机器人科学与工程学院, 沈阳 110169
  • 收稿日期:2021-03-08 修回日期:2021-07-09 发布日期:2021-07-16
  • 作者简介:房立金(1965—),男,教授、博士、博士生导师,主研方向为仿生攀爬移动机器人设计与控制、高精度机器人控制、机器人视觉控制;王科棋,硕士研究生。
  • 基金资助:
    国家自然科学基金(51575092);辽宁省中央引导地方科技发展专项(2021JH6/10500132)。

A Visual SLAM Algorithm for Motion Redetection Combined with Deep Learning

FANG Lijin, WANG Keqi   

  1. School of Robot Science and Engineering, Northeastern University, Shenyang 110169, China
  • Received:2021-03-08 Revised:2021-07-09 Published:2021-07-16

摘要: 在现实场景中,传统视觉同步定位与建图(SLAM)算法存在静态环境假设的限制。由于运动物体的影响,传统的视觉里程计存在大量误匹配,从而影响整个SLAM算法的运行精度,导致系统无法在现实场景中稳定运行。基于深度学习和多视图几何,提出一种面向室内动态环境的视觉SLAM算法。采用目标检测网络对动态物体进行预检测确定潜在运动对象,根据预检测结果,利用多视图几何完成运动物体重检测,确认实际产生运动的物体并将场景中的对象划分为动态和静态两种状态。基于跟踪线程和局部建图线程,提出一种语义数据关联方法和关键帧选取策略,以减少运动物体对算法精度的影响,提高系统的稳定性。在TUM公开数据集上的实验结果表明,在动态场景下,相较于ORB-SLAM2算法,该算法平均均方根误差降低了40%,与同样具有运动剔除的DynaSLAM算法相比,算法实时性提高10倍以上,且运行速度与精度均明显提高。

关键词: 同步定位与建图, 深度学习, 多视图几何, 动态场景, 运动剔除

Abstract: In real scenes, the traditional visual Simultaneous Localization and Mapping(SLAM) algorithm is limited by the assumption of a static environment.Because of the influence of moving objects, the traditional visual odometer makes many mismatches.Thisaffects the running accuracy of the entire SLAM algorithm, which makes the system unable to run statically in real scenes.This paper proposes a robust visual SLAM algorithm for indoor dynamic environments based on deep learning and multiview geometry.First, the object detection network is used to predetect the dynamic objects to determine the potential moving objects.Then, according to the predetection results, multiview geometry is used to complete the redetection of moving objects to confirm the actual moving objects.The objects in the scene are divided into dynamic and static states.Second, a semantic data association method and a key-frame selection strategy are proposed for the tracking thread and the local mapping thread to reduce the influence of moving objects on the algorithm accuracy.Experimental results on the Technical University of Munich(TUM) open dataset show that, in dynamic scenarios, compared with the Oriented fast and Rotated Brief Simultaneous Localization and Mapping 2 (ORB-SLAM2) algorithm, the root-mean-square error of the proposed algorithm is reduced by 40%.Compared with the Dynamic Simultaneous Localization and Mapping(DynaSLAM) algorithm with kinematic removal, the real-time performance of the proposed algorithm is more than 10 times better.In addition, the running speed and accuracy are improvedsignificantly.

Key words: Simultaneous Localization and Mapping(SLAM), deep learning, multi-view geometry, dynamic scene, motion removal

中图分类号: