[1] ENGEL J, SCHÖPS T, CREMERS D.LSD-SLAM:large-scale direct monocular SLAM[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:834-849. [2] ENGEL J, KOLTUN V, CREMERS D.Direct sparse odometry[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3):611-625. [3] MUR-ARTAL R, TARDÓS J D.ORB-SLAM2:an open-source SLAM system for monocular, stereo, and RGB-D cameras[J].IEEE Transactions on Robotics, 2017, 33(5):1255-1262. [4] QIN T, LI P L, SHEN S J.VINS-mono:a robust and versatile monocular visual-inertial state estimator[J].IEEE Transactions on Robotics, 2018, 34(4):1004-1020. [5] CHENG J Y, SUN Y X, CHI W Z, et al.An accurate localization scheme for mobile robots using optical flow in dynamic environments[C]//Proceedings of 2018 IEEE International Conference on Robotics and Biomimetics.Washington D.C., USA:IEEE Press, 2018:723-728. [6] SUN Y X, LIU M, MENG M Q H.Improving RGB-D SLAM in dynamic environments:a motion removal approach[J].Robotics and Autonomous Systems, 2017, 89:110-122. [7] LI S L, LEE D.RGB-D SLAM in dynamic environments using static point weighting[J].IEEE Robotics and Automation Letters, 2017, 2(4):2263-2270. [8] LIU H M, ZHANG G F, BAO H J.Robust keyframe-based monocular SLAM for augmented reality[C]//Proceedings of 2016 IEEE International Symposium on Mixed and Augmented Reality.Washington D.C., USA:IEEE Press, 2016:340-341. [9] WEI T, LIU H M, DONG Z L, et al.Robust monocular SLAM in dynamic environments[C]//Proceedings of 2013 IEEE International Symposium on Mixed and Augmented Reality.Washington D.C., USA:IEEE Press, 2013:209-218. [10] FISCHLER M A, BOLLES R C.A paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM, 1981, 24(6):381-395. [11] YU C, LIU Z X, LIU X J, et al.DS-SLAM:a semantic visual SLAM towards dynamic environments[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2018:1168-1174. [12] BESCOS B, FÁCIL J M, CIVERA J, et al.DynaSLAM:tracking, mapping, and inpainting in dynamic scenes[J].IEEE Robotics and Automation Letters, 2018, 3(4):4076-4083. [13] 张金凤, 石朝侠, 王燕清.动态场景下基于视觉特征的SLAM方法[J].计算机工程, 2020, 46(10):95-102. ZHANG J F, SHI C X, WANG Y Q.SLAM method based on visual features in dynamic scene[J].Computer Engineering, 2020, 46(10):95-102.(in Chinese) [14] HENEIN M, ZHANG J, MAHONY R, et al.Dynamic SLAM:the need for speed[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2020:2123-2129. [15] BESCOS B, CAMPOS C, TARDÓS J D, et al.DynaSLAM II:tightly-coupled multi-object tracking and SLAM[J].IEEE Robotics and Automation Letters, 2021, 6(3):5191-5198. [16] 张晨阳, 黄腾, 吴壮壮.基于K-Means聚类与深度学习的RGB-D SLAM算法[J].计算机工程, 2022, 48(1):236-244, 252. ZHANG C Y, HUANG T, WU Z Z.RGB-D SLAM algorithm based on K-Means clustering and deep learning[J].Computer Engineering, 2022, 48(1):236-244, 252.(in Chinese) [17] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [18] HOWARD A G, ZHU M L, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-02-10].https://arxiv.org/abs/1704.04861. [19] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-02-10].https://arxiv.org/abs/1409.1556. [20] MA J L, CHEN B.Dual refinement feature pyramid networks for object detection[EB/OL].[2021-02-10].https://arxiv.org/abs/2012.01733. [21] FU C Y, LIU W, RANGA A, et al.DSSD:deconvolutional single shot detector[EB/OL].[2021-02-10].https://arxiv.org/abs/1701.06659. [22] LIN T Y, MAIRE M, BELONGIE S, et al.Microsoft COCO:common objects in context[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:740-755. [23] COVER T M, THOMAS J A.Elements of information theory[M].New York, USA:John Wiley & Sons, Inc., 1991. [24] BESL P J, MCKAY N D.A method for registration of 3-D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. [25] HANDA A, WHELAN T, MCDONALD J, et al.A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2014:1524-1531. |