[1] NGUYEN T N, MEUNIER J.Anomaly detection in video sequence with appearance-motion correspondence[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1273-1283. [2] TU Z G, XIE W, ZHANG D J, et al.A survey of variational and CNN-based optical flow techniques[J].Signal Processing:Image Communication, 2019, 72:9-24. [3] WANG L M, XIONG Y J, WANG Z, et al.Temporal segment networks for action recognition in videos[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11):2740-2755. [4] WANG H, SCHMID C.Action recognition with improved trajectories[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2013:3551-3558. [5] SALIGRAMA V, KONRAD J, JODOIN P M.Video anomaly identification[J].IEEE Signal Processing Magazine, 2010, 27(5):18-33. [6] RANZATO M, POULTNEY C, CHOPRA S, et al.Efficient learning of sparse representations with an energy-based model[EB/OL].[2021-08-05].https://proceedings.neurips.cc/paper/2006/file/87f4d79e36d68c3031ccf6c55e9bbd39-Paper.pdf. [7] 傅博, 王瑞子, 王丽妍, 等.基于深度卷积神经网络的水下偏色图像增强方法[J].吉林大学学报(理学版), 2021, 59(4):891-899. FU B, WANG R Z, WANG L Y, et al.Enhancement method of underwater color cast image based on deep convolutional neural network[J].Journal of Jilin University(Science Edition), 2021, 59(4):891-899.(in Chinese) [8] RIFAI S, VINCENT P, MULLER X, et al.Contractive auto-encoders:explicit invariance during feature extraction[EB/OL].[2021-08-05].http://www.icml-2011.org/papers/455_icmlpaper.pdf. [9] YU T, REN Z, LI Y C, et al.Temporal structure mining for weakly supervised action detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:5521-5530. [10] VAROL G, LAPTEV I, SCHMID C.Long-term temporal convolutions for action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1510-1517. [11] CARREIRA J, ZISSERMAN A.Quo vadis, action recognition?A new model and the kinetics dataset[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4724-4733. [12] TRAN D, BOURDEV L, FERGUS R, et al.Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:4489-4497. [13] WANG L M, XIONG Y J, WANG Z, et al.Temporal segment networks:towards good practices for deep action recognition[EB/OL].[2021-08-05].https://arxiv.org/pdf/1608.00859.pdf. [14] SIMONYAN K, ZISSERMAN A.Two-stream convolutional networks for action recognition in videos[EB/OL].[2021-08-05].https://arxiv.org/abs/1406.2199. [15] XU D, YAN Y, RICCI E, et al.Detecting anomalous events in videos by learning deep representations of appearance and motion[J].Computer Vision and Image Understanding, 2017, 156:117-127. [16] RAVANBAKHSH M, NABI M, SANGINETO E, et al.Abnormal event detection in videos using generative adversarial nets[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2017:1577-1581. [17] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [18] RABIEE H, HADDADNIA J, MOUSAVI H, et al.Novel dataset for fine-grained abnormal behavior understanding in crowd[C]//Proceedings of the 13th IEEE International Conference on Advanced Video and Signal Based Surveillance.Washington D.C., USA:IEEE Press, 2016:95-101. [19] SULTANI W, CHEN C, SHAH M.Real-world anomaly detection in surveillance videos[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6479-6488. [20] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-08-05].https://arxiv.org/abs/1409.1556. [21] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1-9. [22] LI W X, MAHADEVAN V, VASCONCELOS N.Anomaly detection and localization in crowded scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):18-32. [23] LU C W, SHI J P, JIA J Y.Abnormal event detection at 150 FPS in MATLAB[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2013:2720-2727. [24] ZIMEK A, SCHUBERT E, KRIEGEL H P.A survey on unsupervised outlier detection in high-dimensional numerical data[J].Statistical Analysis and Data Mining, 2012, 5(5):363-387. [25] HASAN M, CHOI J, NEUMANN J, et al.Learning temporal regularity in video sequences[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:733-742. [26] NAWARATNE R, ALAHAKOON D, DE SILVA D, et al.Spatiotemporal anomaly detection using deep learning for real-time video surveillance[J].IEEE Transactions on Industrial Informatics, 2020, 16(1):393-402. [27] CHONG Y S, TAY Y H.Abnormal event detection in videos using spatiotemporal autoencoder[EB/OL].[2021-08-05].https://arxiv.org/pdf/1701.01546.pdf. [28] ZHAO Y R, DENG B, SHEN C, et al.Spatio-temporal autoencoder for video anomaly detection[C]//Proceedings of the 25th ACM International Conference on Multimedia.New York, USA:ACM Press, 2017:1933-1941. [29] LIU W, LUO W X, LIAN D Z, et al.Future Frame prediction for anomaly detection-A new baseline[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6536-6545. [30] CHANG Y P, TU Z G, XIE W, et al.Video anomaly detection with spatio-temporal dissociation[J].Pattern Recognition, 2022, 122:108213. |