[1] 黄凯奇, 陈晓棠, 康运锋, 等.智能视频监控技术综述[J].计算机学报, 2015, 38(6):1093-1118. HUANG K Q, CHEN X T, KANG Y F, et al.Intelligent visual surveillance:a review[J].Chinese Journal of Computers, 2015, 38(6):1093-1118.(in Chinese) [2] 王志国, 章毓晋.监控视频异常检测:综述[J].清华大学学报(自然科学版), 2020, 60(6):518-529. WANG Z G, ZHANG Y J.Anomaly detection in surveillance videos:a survey[J].Journal of Tsinghua University(Science and Technology), 2020, 60(6):518-529.(in Chinese) [3] ADAM A, RIVLIN E, SHIMSHONI I, et al.Robust real-time unusual event detection using multiple fixed-location monitors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3):555-560. [4] LI W X, MAHADEVAN V, VASCONCELOS N.Anomaly detection and localization in crowded scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):18-32. [5] LI T, CHANG H, WANG M, et al.Crowded scene analysis:a survey[J].IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(3):367-386. [6] LEE D G, SUK H I, PARK S K, et al.Motion influence map for unusual human activity detection and localization in crowded scenes[J].IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(10):1612-1623. [7] XIONG L, CHEN X, SCHNEIDER J.Direct robust matrix factorizatoin for anomaly detection[C]//Proceedings of the 11th International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2011:844-853. [8] 李娟, 张冰怡, 冯志勇, 等.基于隐马尔可夫模型的视频异常场景检测[J].计算机工程与科学, 2017, 39(7):1300-1308. LI J, ZHANG B Y, FENG Z Y, et al.Anomaly detection based on hidden Markov model in videos[J].Computer Engineering & Science, 2017, 39(7):1300-1308.(in Chinese) [9] SIMONYAN K, ZISSERMAN A.Two-stream convolutional networks for action recognition in videos[EB/OL].[2021-11-10].https://arxiv.org/abs/1406.2199. [10] FAN Y X, WEN G J, LI D R, et al.Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder[J].Computer Vision and Image Understanding, 2020, 195:1-10. [11] 王瑞鹏.基于3D卷积的人体行为识别技术研究[D].沈阳:沈阳理工大学, 2021. WANG R P.Research on human action recognition technology based on 3D convolution[D].Shenyang:Shenyang Ligong University, 2021.(in Chinese) [12] NOGAS J, KHAN S S, MIHAILIDIS A.DeepFall:non-invasive fall detection with deep spatio-temporal convolutional autoencoders[J].Journal of Healthcare Informatics Research, 2020, 4(1):50-70. [13] CHONG Y S, TAY Y H.Abnormal event detection in videos using spatiotemporal autoencoder[M]//CONG F Y, LEUNG A, WEI Q L.Advances in neural networks-ISNN 2017.Berlin, Germany:Springer, 2017:189-196. [14] WANG T, QIAO M N, LIN Z W, et al.Generative neural networks for anomaly detection in crowded scenes[J].IEEE Transactions on Information Forensics and Security, 2019, 14(5):1390-1399. [15] SABOKROU M, KHALOOEI M, FATHY M, et al.Adversarially learned one-class classifier for novelty detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3379-3388. [16] GONG D, LIU L Q, LE V, et al.Memorizing normality to detect anomaly:memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1705-1714. [17] PARK H, NOH J, HAM B.Learning memory-guided normality for anomaly detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:14360-14369. [18] IONESCU R T, KHAN F S, GEORGESCU M I, et al.Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:7834-7843. [19] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [20] SEVILLA-LARA L, LIAO Y Y, GUNEY F, et al.On the integration of optical flow and action recognition[EB/OL].[2021-11-10].https://arxiv.org/abs/1712.08416. [21] CHAN A B, LIANG Z S J, VASCONCELOS N.Privacy preserving crowd monitoring:counting people without people models or tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press:2008:1-7. [22] LU C W, SHI J P, JIA J Y.Abnormal event detection at 150 FPS in MATLAB[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2014:2720-2727. [23] HASAN M, CHOI J, NEUMANN J, et al.Learning temporal regularity in video sequences[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:733-742. [24] LUO W X, LIU W, GAO S H.Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of IEEE International Conference on Multimedia and Expo.Washington D.C., USA:IEEE Press, 2017:439-444. [25] NGUYEN T N, MEUNIER J.Anomaly detection in video sequence with appearance-motion correspondence[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1273-1283. |