1 |
倪骥, 王宇嘉, 赵博. 融合部首特征和BERT的汽车生产设备故障领域命名实体识别. 小型微型计算机系统, 2024, 45(6): 1370- 1375.
URL
|
|
NI J, WANG Y J, ZHAO B. Named entity recognition for automotive production equipment fault domain fusing radical feature and BERT. Journal of Chinese Computer Systems, 2024, 45(6): 1370- 1375.
URL
|
2 |
江婉榕. 基于文本数据增强和特征选择的不平衡分类算法研究[D]. 合肥: 中国科学技术大学, 2022.
|
|
JIANG W R. Research on imbalanced classification algorithm based on text data augmentation and feature selection[D]. Hefei: University of Science and Technology of China, 2022. (in Chinese)
|
3 |
ZHOU G D, SU J. Named entity recognition using an HMM-based chunk tagger[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2001: 473-480.
|
4 |
AKBIK A, BERGMANN T, BLYTHE D, et al. FLAIR: an easy-to-use framework for state-of-the-art NLP[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 54-59.
|
5 |
LIU T Y, JIANG Y E, MONATH N, et al. Autoregressive structured prediction with language models[C]//Proceedings of EMNLP 2022. Stroudsburg, USA: Association for Computational Linguistics, 2022: 993-1005.
|
6 |
SHAH A, VITHANI R, GULLAPALLI A, et al. Finer: financial named entity recognition dataset and weak-supervision model[EB/OL]. [2023-06-10]. https://arxiv.org/pdf/2302.11157.
|
7 |
陈旭, 刘鹏鹤, 孙毓忠, 等. 面向不均衡医学数据集的疾病预测模型研究. 计算机学报, 2019, 42(3): 596- 609.
URL
|
|
CHEN X, LIU P H, SUN Y Z, et al. Research on disease prediction model for unbalanced medical datasets. Journal of Computing, 2019, 42(3): 596- 609.
URL
|
8 |
HAN H, WANG W, MAO B. Borderline-SMOTE: a new over-sampling method in imbalance data sets learning[C]//Proceedings of ICIC 2005. Berlin, Germany: Springer, 2005: 878-887.
|
9 |
LIU J. Importance-SMOTE: a synthetic minority oversampling method for noisy imbalanced data. Soft Computing, 2022, 26(3): 1141- 1163.
doi: 10.1007/s00500-021-06532-4
|
10 |
MALDONADO S, VAIRETTI C, FERNANDEZ A, et al. FW-SMOTE: a feature-weighted oversampling approach for imbalanced classification. Pattern Recognition, 2022, 124, 108511.
doi: 10.1016/j.patcog.2021.108511
|
11 |
|
12 |
LI X Y, SUN X F, MENG Y X, et al. Dice Loss for data-imbalanced NLP tasks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 465-476.
|
13 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
14 |
ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2018: 1554-1564.
|
15 |
LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice Transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 6836-6842.
|
16 |
|
17 |
|
18 |
LIU W, FU X Y, ZHANG Y, et al. Lexicon enhanced Chinese sequence labeling using BERT adapter[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2021: 5847-5858.
|
19 |
司逸晨, 管有庆. 基于Transformer编码器的中文命名实体识别模型. 计算机工程, 2022, 48(7): 66- 72.
URL
|
|
SI Y C, GUAN Y Q. Chinese named entity recognition model based on Transformer encoder. Computer Engineering, 2022, 48(7): 66- 72.
URL
|
20 |
贾鑫桐. 不平衡样本的多标签毒性文本分类——基于改进损失函数的神经网络模型[D]. 上海: 上海财经大学, 2021.
|
|
JIA X T. Multi-label toxic text classification of unbalanced samples—neural network model based on improved loss function[D]. Shanghai: Shanghai University of Finance and Economics, 2021. (in Chinese)
|
21 |
张汝佳, 代璐, 王邦, 等. 基于深度学习的中文命名实体识别最新研究进展综述. 中文信息学报, 2022, 36(6): 20- 35.
URL
|
|
ZHANG R J, DAI L, WANG B, et al. Recent advances of Chinese named entity recognition based on deep learning. Journal of Chinese Information Processing, 2022, 36(6): 20- 35.
URL
|
22 |
JIA C, SHI Y F, YANG Q R, et al. Entity enhanced BERT pre-training for Chinese NER[C]//Proceedings of EMNLP 2020. Stroudsburg, USA: Association for Computational Linguistics, 2020: 6384-6396.
|
23 |
郭渊博, 李勇飞, 陈庆礼, 等. 融合Focal Loss的网络威胁情报实体抽取. 通信学报, 2022, 43(7): 85- 92.
URL
|
|
GUO Y B, LI Y F, CHEN Q L, et al. Fusion of Focal Loss's cyber threat intelligence entity extraction. Journal on Communications, 2022, 43(7): 85- 92.
URL
|
24 |
吴广硕, 樊重俊, 陶国庆, 等. 基于LEBERT-BCF的电子病历实体识别. 计算机时代, 2023,(2): 92- 97.
URL
|
|
WU G S, FAN C J, TAO G Q, et al. Entity recognition of electronic medical records based on LEBERT-BCF. Computer Era, 2023,(2): 92- 97.
URL
|
25 |
LEE L H, LU C H, LIN T M. NCUEE-NLP at SemEval-2022 task 11: Chinese named entity recognition using the BERT-BiLSTM-CRF model[C]//Proceedings of the 16th International Workshop on Semantic Evaluation. Stroudsburg, USA: Association for Computational Linguistics, 2022: 1597-1602.
|
26 |
张应成, 杨洋, 蒋瑞, 等. 基于BiLSTM-CRF的商情实体识别模型. 计算机工程, 2019, 45(5): 308- 314.
URL
|
|
ZHANG Y C, YANG Y, JIANG R, et al. Commercial intelligence entity recognition model based on BiLSTM-CRF. Computer Engineering, 2019, 45(5): 308- 314.
URL
|
27 |
买买提阿依甫, 吾守尔·斯拉木, 帕丽旦·木合塔尔, 等. 基于BiLSTM-CNN-CRF模型的维吾尔文命名实体识别. 计算机工程, 2018, 44(8): 230- 236.
URL
|
|
Maimaitiayifu, SILAMU Wushouer, MUHETAER Palidan, et al. Uyghur named entity recognition based on BiLSTM-CNN-CRF model. Computer Engineering, 2018, 44(8): 230- 236.
URL
|