作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (2): 112-118. doi: 10.19678/j.issn.1000-3428.0063536

• 人工智能与模式识别 • 上一篇    下一篇

基于知识架构的持续学习情感分类方法

王松1, 买日旦·吾守尔1, 古兰拜尔·吐尔洪1, 薛源1,2   

  1. 1. 新疆大学 信息科学与工程学院, 乌鲁木齐 830046;
    2. 清华大学 电子工程系, 北京 100084
  • 收稿日期:2021-12-15 修回日期:2022-03-03 发布日期:2022-06-30
  • 作者简介:王松(1995-),男,硕士研究生,主研方向为持续学习、情感分类;买日旦·吾守尔(通信作者)、古兰拜尔·吐尔洪,副教授、博士;薛源,硕士研究生。
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2021D01C118);新疆维吾尔自治区高校科研计划项目(XJEDU2018Y005)。

Continual Learning Method for Sentiment Classification Based on Knowledge Architecture

WANG Song1, Mairidan Wushouer1, Gulanbaier Tuerhong1, XUE Yuan1,2   

  1. 1. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;
    2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • Received:2021-12-15 Revised:2022-03-03 Published:2022-06-30

摘要: 当情感分类模型依次学习多个领域的情感分类任务时,从新任务中学到的参数会直接修改模型原有参数,由于缺少对原有参数的保护机制,降低了模型在旧任务上的分类准确率。为缓解灾难遗忘现象对模型性能的影响,并增加任务间的知识迁移,提出一种用于中文情感分类的基于知识架构的持续学习方法。在Transformer编码层中,采用任务自注意力机制为每个任务单独设置注意力变换矩阵,通过区分任务特有的注意力参数实现知识保留。在TextCNN的全连接层中,利用任务门控注意力(HAT)机制控制每个神经元的开闭,为每个任务训练特定的网络结构,仅激活对任务重要的神经元加强知识挖掘,提升分类效率与准确率。在JD21中文数据集上的实验结果表明,该方法的Last ACC和负类F1值相比于基于HAT的持续学习方法分别提升了0.37和0.09个百分点,具有更高的分类准确率,并且有效缓解了灾难遗忘现象。

关键词: 持续学习, 知识架构, 情感分类, 知识保留网络, 知识挖掘网络

Abstract: When a sentiment classification model learns sentiment classification tasks in multiple domains, the parameters learned from new tasks will modify the original parameters of the model.Because a protection mechanism for the original parameters does not exist, the classification accuracy of the model on old tasks is reduced.To alleviate the catastrophic forgetting of the sentiment classification model and increase knowledge transfer between tasks, this study proposes a Continual Learning(CL) method for sentiment classification based on a knowledge architecture.In the Transformer coding layer, the task self-attention mechanism is used to set the attention transformation matrix for each task separately, and knowledge is retained by distinguishing the task specific attention parameters. In the full connection layer of Convolutional Neural Networks for Sentence Classification(TextCNN), the Hard Attention on Task(HAT) mechanism is used to control the opening and closing of each neuron, train a specific network structure for each task, activate only the neurons important to the task to realize knowledge mining, and improve the classification efficiency and accuracy.Experimental results based on the JD21 Chinese dataset show that the Last Accuracy(Last ACC) and F1-scores of Negative classes(F1-NEG) of this method are 0.37 and 0.09 percentage points higher than those of the HAT-based CL method, respectively, which indicates the higher classification accuracy and effectiveness of the proposed method in mitigating catastrophic forgetting.

Key words: Continual Learning(CL), knowledge architecture, sentiment classification, Knowledge Retention Network(KRN), Knowledge Mining Network(KMN)

中图分类号: