1 |
LI L, LIU Y, ZHOU A. Hierarchical attention based position-aware network for aspect-level sentiment analysis[C]//Proceedings of the 22nd Conference on Computational Natural Language Learning. Brussels, Belgium: Association for Computational Linguistics, 2018: 181-189.
|
2 |
CHEN Z, QIAN T. Transfer capsule network for aspect level sentiment classification[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational Linguistics, 2019: 547-556.
|
3 |
FAN F, FENG Y, ZHAO D. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, 2018: 3433-3442.
|
4 |
REN Z Y , ZENG G P , CHEN L , et al. A lexicon-enhanced attention network for aspect-level sentiment analysis. IEEE Access, 2020, 8, 93464- 93471.
doi: 10.1109/ACCESS.2020.2995211
|
5 |
LUONG T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics, 2015: 1412-1421.
|
6 |
ZHOU J , CHEN Q , HUANG J X , et al. Position-aware hierarchical transfer model for aspect-level sentiment classification. Information Sciences, 2020, 513, 1- 16.
doi: 10.1016/j.ins.2019.11.048
|
7 |
ZHOU J , HUANG J X , HU Q V , et al. Is position important? Deep multi-task learning for aspect-based sentiment analysis. Applied Intelligence, 2020, 50 (10): 3367- 3378.
doi: 10.1007/s10489-020-01760-x
|
8 |
GU S Q, ZHANG L P, HOU Y X, et al. A position-aware bidirectional attention network for aspect-level sentiment analysis[C]//Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, USA: Association for Computational Linguistics, 2018: 774-784.
|
9 |
ZENG B Q , YANG H , XU R Y , et al. LCF: a local context focus mechanism for aspect-based sentiment classification. Applied Sciences, 2019, 9 (16): 3389.
doi: 10.3390/app9163389
|
10 |
VO D T, ZHANG Y. Target-dependent Twitter sentiment classification with rich automatic features[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2015: 1-10.
|
11 |
JIANG L, YU M, ZHOU M, et al. Target-dependent Twitter sentiment classification[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, USA: Association for Computational Linguistics, 2011: 151-160.
|
12 |
TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 3298-3307.
|
13 |
TAY Y , TUAN L A , HUI S C . Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 1- 10.
|
14 |
WANG Y, HUANG M, ZHU X Y, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA: Association for Computational Linguistics, 2016: 606-615.
|
15 |
TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]//Proceedings of 2016 Conference on Empirical Methods in Natura Language Processing. Austin, USA: Association for Computational Linguistics, 2016: 214-224.
|
16 |
MA Y , PENG H , CAMBRIA E . Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 1- 10.
|
17 |
HAN H, LI X, ZHI S, et al. Multi-attention network for aspect sentiment analysis[C]//Proceedings of the 8th International Conference on Software and Computer Applications. New York, USA: ACM Press, 2019: 22-26.
|
18 |
QIAN Q, HUANG M, LEI J, et al. Linguistically regularized LSTM for sentiment classification[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Vancouver, Canada: Association for Computational Linguistics, 2017: 1679-1689.
|
19 |
SHIN B, LEE T, CHOI J D. Lexicon integrated CNN models with attention for sentiment analysis[C]//Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Copenhagen, Denmark: Association for Computational Linguistics, 2017: 149-158.
|
20 |
KE P, JI H, LIU S, et al. SentiLARE: sentiment-aware language representation learning with linguistic knowledge[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. [S. l.]: Association for Computational Linguistics, 2020: 6975-6988.
|
21 |
施荣华, 金鑫, 胡超. 基于图注意力网络的方面级别文本情感分析. 计算机工程, 2022, 48 (2): 34- 39.
URL
|
|
SHI R H , JIN X , HU C . Aspect-level text emotion analysis based on graph attention network. Computer Engineering, 2022, 48 (2): 34- 39.
URL
|
22 |
孙天伟, 杨长春, 顾晓清, 等. 结合共现网络的方面级情感分析研究. 计算机工程与应用, 2023, 59 (20): 111- 118.
URL
|
|
SUN T W , YANG C C , GU X Q , et al. Research on aspect-level sentimentanalysis combined with co-existing networks. Computer Engineering and Applications, 2023, 59 (20): 111- 118.
URL
|
23 |
刘欣逸, 宁博, 王明, 等. 基于句法增强的细粒度情感三元组抽取方法. 计算机研究与发展, 2023, 60 (7): 1649- 1660.
URL
|
|
LIU X Y , NING B , WANG M , et al. Fine-grained sentiment triple extraction method based on syntactic enhancement. Journal of Computer Research and Development, 2023, 60 (7): 1649- 1660.
URL
|
24 |
HE R, LEE W S, NG H T, et al. Exploiting document knowledge for aspect-level sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 2: Short Papers). Melbourne, Australia: Association for Computational Linguistics, 2018: 579-585.
|
25 |
|
26 |
LI N, CHOW C Y, ZHANG J D. EMOVA: a semi-supervised end-to-end moving-window attentive framework for aspect mining[M]//LAUW H W, WONG R C W, NTOULAS A, et al. Advances in knowledge discovery and data mining. Berlin, Germany: Springer, 2020: 811-823.
|
27 |
LI N , CHOW C Y , ZHANG J D . SEML: a semi-supervised multi-task learning framework for aspect-based sentiment analysis. IEEE Access, 2020, 8, 189287- 189297.
|
28 |
PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: Association for Computational Linguistics, 2014: 1532-1543.
|
29 |
NI J, LI J, MCAULEY J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong, China: Association for Computational Linguistics, 2019: 188-197.
|
30 |
CHENG X, XU W, WANG T, et al. Variational semi-supervised aspect-term sentiment analysis via Transformer[C]//Proceedings of the 23rd Conference on Computational Natural Language Learning. Hong Kong, China: Association for Computational Linguistics, 2019: 961-969.
|
31 |
|
32 |
MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: [s. n.], 2017: 4068-4074.
|
33 |
GU S, ZHANG L, HOU Y, et al. A position-aware bidirectional attention network for aspect-level sentiment analysis[C]//Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, USA: Association for Computational Linguistics, 2018: 774-784.
|
34 |
CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, 2017: 452-461.
|
35 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT. Minneapolis, USA: Association for Computational Linguistics, 2019: 4171-4186.
|