[1] ISBELL C L.Sparse multi-level representations for text retrieval[M].Cambridge,USA:MIT Press,1998. [2] WANG Mingqiang,LIU Mengting,FENG Shi,et al.A novel calibrated label ranking based method for multiple emotions detection in Chinese microblogs[M].Berlin,Germany:Springer,2014. [3] TANG Duyu,QIN Bing,LIU Ting.Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing.Washington D.C.,USA:IEEE Press,2015:1422-1432. [4] RICHARD S,ALEX P,JY W,et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing.Washington D.C.,USA:IEEE Press,2013:1631-1642. [5] TANG Duyu,WEI Furu,YANG Nan,et al.Learning sentiment specific word embedding for twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.New York,USA:ACM Press,2014:1555-1565. [6] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2019-03-10].https://arxiv.org/abs/1301.3781. [7] JEFFREY P,RICHARD S,CHRISTOPHER M.Glove:global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.New York,USA:ACM Press,2014:1532-1543. [8] TANG Duyu.Sentiment-specific representation learning for document-level sentiment analysis[C]//Proceedings of the 8th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2015:447-452. [9] RONAN C,JASON W,LEON B,et al.Natural language processing(almost) from scratch[J].Journal of Machine Learning Research,2011,12:2493-2537. [10] TANG Duyu,WEI Furu,QIN Bing,et al.Building large-scale Twitter-specific sentiment lexicon:a representation learning approach[C]//Proceedings of COLING'14.New York,USA:ACM Press,2014:172-182. [11] GOTTLOB F.Sense and reference[J].The Philo-sophical Review,1948,57(3):209-230. [12] ARMAND J,EDOUARD G,PIOTR B,et al.Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of EACL.New York,USA:ACM Press,2017:427-431. [13] JEFFREY L E.Finding structure in time[J].Cognitive Science,1990,14(2):179-211. [14] ZHENG Bin,YANG Chen,MA Xiaoping,et al.Malignant thyroid nodule detection based on circular convolutional neural network[J].Laser & Optoelectronics Progress,2019,56(24):102-109.(in Chinese) 郑斌,杨晨,马小萍,等.基于循环卷积神经网络的甲状腺恶性结节检测[J].激光与光电子学进展,2019,56(24):102-109. [15] YOON K.Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.New York,USA:ACM Press,2014:1746-1751. [16] ZHANG X,ZHAO J B,LECUN Y.Character-level convolutional networks for text classification[EB/OL].[2019-03-10].http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf. [17] LAI Siwei,XU Liheng,LIU Kang,et al.Recurrent convolutional neural networks for text classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.New York,USA:ACM Press,2015:2267-2273. [18] ZHOU Jinfeng,YE Shiren,WANG Hui.Text sentiment classification based on deep convolutional neural network model[J].Computer Engineering,2019,45(3):300-308.(in Chinese) 周锦峰,叶施仁,王晖.基于深度卷积神经网络模型的文本情感分类[J].计算机工程,2019,45(3):300-308. [19] DZMITRY B,KYUNGHYUN C,YOSHUA B.Neural machine translation by jointly learning to align and translate[EB/OL].[2019-03-10].https://de.arxiv.org/pdf/1409.0473. [20] ASHISH V,NOAM S,NIKI P,et al.Attention is all you need[EB/OL].[2019-03-10].https://arxiv.org/pdf/1706.03762.pdf. [21] YANG Z C,YANG D Y,DYER C,et al.Hierarchical attention networks for document classification[C]//Proceedings of NAACL'16.New York,USA:ACM Press,2016:1480-1489. [22] CHEN Huimin,SUN Maosong,TU Cunchao,et al.Neural sentiment classification with user and product attention[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.New York,USA:ACM Press,2016:1650-1659. [23] ZHENG Jianming,GUO Yupu,FENG Chong,et al.A hierarchical neural-network-based document represen-tation approach for text classification[J].Mathematical Problems in Engineering,2018,15:1-10. [24] ZOU Yicheng,GUI Tao,ZHANG Qi,et al.A lexicon-based supervised attention model for neural sentiment analysis[C]//Proceedings of COLING'18.New York,USA:ACM Press,2018:868-877. [25] LIU L M,UTIYAMA M,FINCH A,et al.Neural machine translation with supervised attention[C]//Proceedings of COLING'16.New York,USA:ACM Press,2016:3093-3102. [26] WALAA M,AHMED H,HODA K.Sentiment analysis algorithms and applications:a survey[J].Ain Shams Engineering Journal,2014,5(4):1093-1113. [27] SAINBAYAR S,JASON W,ROB F,et al.End-to-end memory networks[EB/OL].[2019-03-10].https://arxiv.org/pdf/1610.04211.pdf. [28] LESLIE N S.Cyclical learning rates for training neural networks[C]//Proceedings of WACV'17.Washington D.C.,USA:IEEE Press,2017:464-472. [29] LESLIE N S.A disciplined approach to neural network hyper-parameters:part 1-learning rate,batch size,momentum,and weight decay[EB/OL].[2019-03-10].https://arxiv.org/pdf/1803.09820.pdf. [30] LIAO Xiangwen,WU Xiaojing,GUI Lin,et al.Cross-domain sentiment classification based on representation learning and transfer learning[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(1):37-46.(in Chinese)廖祥文,吴晓静,桂林,等.结合表示学习和迁移学习的跨领域情感分类[J].北京大学学报(自然科学版),2019,55(1):37-46. |