[1] 王婧娟, 陈庆奎.一种时空周期性注意力网络的交通流量预测模型[J].小型微型计算机系统, 2022, 43(11):2321-2327. WANG J J, CHEN Q K.Traffic flow prediction model based on the spatio-temporal periodic attention network[J].Journal of Chinese Computer Systems, 2022, 43(11):2321-2327.(in Chinese) [2] LANA I, DEL SER J, VELEZ M, et al.Road traffic forecasting:recent advances and new challenges[J].IEEE Intelligent Transportation Systems Magazine, 2018, 10(2):93-109. [3] 杨立宁, 李艳婷.基于SVD和ARIMA的时空序列分解与预测[J].计算机工程, 2021, 47(3):53-61. YANG L N, LI Y T.Spatio-temporal sequence decomposition and prediction based on SVD and ARIMA[J].Computer Engineering, 2021, 47(3):53-61.(in Chinese) [4] CHANDRA S R, AL-DEEK H.Predictions of freeway traffic speeds and volumes using vector autoregressive models[J].Journal of Intelligent Transportation Systems, 2009, 13(2):53-72. [5] CAI L R, YU Y D, ZHANG S Y, et al.A sample-rebalanced outlier-rejected-nearest neighbor regression model for short-term traffic flow forecasting[J].IEEE Access, 2020, 8:22686-22696. [6] WEI D L, LIU H C.An adaptive-margin support vector regression for short-term traffic flow forecast[J].Journal of Intelligent Transportation Systems, 2013, 17(4):317-327. [7] KUMAR S V.Traffic flow prediction using Kalman filtering technique[J].Procedia Engineering, 2017, 187:582-587. [8] JIANG W W, LUO J Y.Graph neural network for traffic forecasting:a survey[J].Expert Systems with Applications, 2022, 207:117921. [9] YU B, YIN H T, ZHU Z X.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2018:3634-3640. [10] GUO S N, LIN Y F, FENG N, et al.Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:922-929. [11] YAGUANG L, ROSE Y, CYRUS S, et al.Diffusion convolutional recurrent neural network:data-driven traffic forecasting[EB/OL].[2021-11-05].https://arxiv.org/pdf/1707.01926.pdf. [12] WU Z H, PAN S R, LONG G D, et al.Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2019:1907-1913. [13] SUN L, YAN Z, MELLADO S M, et al.3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2018:5942-5948. [14] 朱煜, 赵江坤, 王逸宁, 等.基于深度学习的人体行为识别算法综述[J].自动化学报, 2016, 42(6):848-857. ZHU Y, ZHAO J K, WANG Y N, et al.A review of human action recognition based on deep learning[J].Acta Automatica Sinica, 2016, 42(6):848-857.(in Chinese) [15] BAI L, YAO L N, KANHERE S S, et al.STG2Seq:spatial-temporal graph to sequence model for multi-step passenger demand forecasting[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2019:1981-1987. [16] SONG C, LIN Y F, GUO S N, et al.Spatial-temporal synchronous graph convolutional networks:a new framework for spatial-temporal network data forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1):914-921. [17] PAN C, CHEN S, ORTEGA A.Spatio-temporal graph scattering transform[C]//Proceedings of the 9th International Conference on Learning Representations.Washington D.C., USA:IEEE Press, 2021:122-136. [18] LOUKAS A, FOUCARD D.Frequency analysis of time-varying graph signals[C]//Proceedings of IEEE Global Conference on Signal and Information Processing.Washington D.C., USA:IEEE Press, 2016:346-350. [19] GRASSI F, LOUKAS A, PERRAUDIN N, et al.A time-vertex signal processing framework:scalable processing and meaningful representations for time-series on graphs[J].IEEE Transactions on Signal Processing, 2018, 66(3):817-829. [20] KIPF T, WELLING M.Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations.Washington D.C., USA:IEEE Press, 2017:16-22. [21] NATALI A, ISUFI E, LEUS G.Forecasting multi-dimensional processes over graphs[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2020:5575-5579. [22] GAO F, WOLF G, HIRN M.Geometric scattering for graph data analysis[C]//Proceedings of the 36th International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2019:2122-2131. [23] MIN Y, WENKEL F, WOLF G.Scattering GCN:overcoming oversmoothness in graph convolutional networks[J].Advances in Neural Information Processing Systems, 2020, 33:14498-14508. [24] 陈永, 张薇.高速跟驰交通流动力学模型研究[J].物理学报, 2020, 69(6):064501. CHEN Y, ZHANG W.Dynamic model of high speed following traffic flow[J].Acta Physica Sinica, 2020, 69(6):064501.(in Chinese) [25] GRASSI F, PERRAUDIN N, RICAUD B.Tracking time-vertex propagation using dynamic graph wavelets[C]//Proceedings of IEEE Global Conference on Signal and Information Processing.Washington D.C., USA:IEEE Press, 2016:351-355. [26] SUTSKEVER I, VINYALS O, LE Q V.Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2014:3104-3112. |