1 |
ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2017: 1655-1661.
|
2 |
LIANG Y X, KE S Y, ZHANG J B, et al. GeoMAN: multi-level attention networks for Geo-sensory time series prediction[C]//Proceedings of International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2018: 3428-3434.
|
3 |
SONG C, LIN Y F, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]//Proceedings of AAAI Conference on Artificial Intelligence. New York, USA: ACM Press 2020: 914-921.
|
4 |
彭桐歆, 韩勇, 王程, 等. 面向短时地铁客流量预测的混合深度学习模型. 计算机工程, 2022, 48(5): 297- 305.
URL
|
|
PENG T X, HAN Y, WANG C, et al. Hybrid deep-learning model for short-term metro passenger flow prediction. Computer Engineering, 2022, 48(5): 297- 305.
URL
|
5 |
REZA S, FERREIRA M C, MACHADO J J M, et al. A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Systems with Applications, 2022, 202, 117275.
doi: 10.1016/j.eswa.2022.117275
|
6 |
LI J Y, WANG S Z, ZHANG J Q, et al. Fine-grained urban flow inference with incomplete data. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5851- 5864.
|
7 |
SHU W N, CAI K, XIONG N. A short-term traffic flow prediction model based on an improved gate recurrent unit neural network. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(9): 16654- 16665.
|
8 |
裴玉龙, 宇文翀, 常铮, 等. 基于综合交通网络的干线公路客流预测方法. 交通运输工程学报, 2022, 22(4): 259- 272.
URL
|
|
PEI Y L, YUWEN C, CHANG Z, et al. Trunk highway passenger flow forecasting method based on comprehensive transportation network. Journal of Traffic and Transportation Engineering, 2022, 22(4): 259- 272.
URL
|
9 |
|
10 |
SUN J K, ZHANG J B, LI Q F, et al. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks[EB/OL]. [2023-07-05]. http://arxiv.org/abs/1903.07789v2.
|
11 |
DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]// Proceedings of ECCV'14. Berlin, Germany: Springer, 2014: 184-199.
|
12 |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[EB/OL]. [2023-07-05]. http://arxiv.org/abs/1609.05158v2.
|
13 |
DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]// Proceedings of ECCV'16. Berlin, Germany: Springer, 2016: 391-407.
|
14 |
|
15 |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4681-4690.
|
16 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 136-144.
|
17 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of NIPS'17. Cambridge, USA: MIT Press, 2017: 5998-6008.
|
18 |
LU Z, LI J, LIU H, et al. Transformer for single image super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 457-466.
|
19 |
|
20 |
LI J Y, WANG S Z, ZHANG J Q, et al. Fine-grained urban flow inference with incomplete data. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5851- 5864.
|
21 |
GUO S, LIN Y, WAN H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(11): 5415- 5428.
|
22 |
LIANG Y X, OUYANG K, JING L, et al. UrbanFM: inferring fine-grained urban flows[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 3132-3142.
|
23 |
ZHOU X C, ZHOU D Z, LIU L B. TRUFM: a transformer-guided framework for fine-grained urban flow inference[C]//Proceedings of the 28th International Conference on Neural Information Processing. New York, USA: ACM Press, 2021: 262-273.
|
24 |
|
25 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 213-229.
|
26 |
YU J, FAN Y, HUANG T. Wide activation for efficient image and video super-resolution[C]//Proceedings of the 30th British Machine Vision Conference. London, UK: [s. n.], 2019: 216-228.
|
27 |
ZHANG X D, ZENG H, ZHANG L. Edge-oriented convolution block for real-time super resolution on mobile devices[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4034-4043.
|
28 |
WANG X T, DONG C, SHAN Y. RepSR: training efficient VGG-style super-resolution networks with structural re-parameterization and batch normalization[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM Press, 2022: 2556-2564.
|
29 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
30 |
LIU L, ZHEN J, LI G, et al. Dynamic spatial-temporal representation learning for traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11): 7169- 7183.
|
31 |
邹国建, 赖子良, 李晔. 基于时空注意力网络的动态高速路网交通速度预测. 计算机工程, 2023, 49(2): 303- 313.
URL
|
|
ZOU G J, LAI Z L, LI Y. Traffic speed prediction based on spatio-temporal attention network for dynamic expressway network. Computer Engineering, 2023, 49(2): 303- 313.
URL
|
32 |
ZHONG T, YU H, LI R, et al. Probabilistic fine-grained urban flow inference with normalizing flows[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 3663-3667.
|
33 |
VANDAL T, KODRA E, GANGULY S, et al. DeepSD: generating high resolution climate change projections through single image super-resolution[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 1663-1672.
|