[1] SUN Hongyun,YANG Jinshun,WU Bing.Empirical analysis of speed-density relationships for urban expressway under rainstorm condition[J].Journal of Transportation Systems Engineering and Information Technology,2016,16(3):221-227.(in Chinese)孙洪运,杨金顺,吴兵.暴雨对快速路速度-密度关系影响的实证分析[J].交通运输系统工程与信息,2016,16(3):221-227. [2] HUANG Xiaohui,ZHANG Cuifang.Prediction for short-term traffic flow based on wavelet neural network optimised by cuckoo search algorithm[J].Computer Applications and Software,2017,34(3):238-242.(in Chinese)黄晓慧,张翠芳.布谷鸟算法优化小波神经网络的短时交通流预测[J].计算机应用与软件,2017,34(3):238-242. [3] SONG Qingqing,HE Xingshi,GUO Xu.An improvement of cuckoo search algorithm based on chaotic sequence[J].Basic Sciences Journal of Textile Universities,2017,30(3):423-428.(in Chinese)宋庆庆,贺兴时,郭旭.基于混沌序列的布谷鸟算法改进[J].纺织高校基础科学学报,2017,30(3):423-428. [4] LI Rongyu,DAI Ruiwen.Adaptive step-size cuckoo search algorithm[J].Computer Science,2017,44(5):235-240.(in Chinese)李荣雨,戴睿闻.自适应步长布谷鸟搜索算法[J].计算机科学,2017,44(5):235-240. [5] LU Weifeng,DAI Jun.An improved cuckoo search algorithm based on fractional order calculus[J].Mathematics in Practice and Theory,2019,49(2):265-272.(in Chinese)陆伟峰,戴军.一种改进的分数阶布谷鸟搜索算法研究[J].数学的实践与认识,2019,49(2):265-272. [6] QU Licheng,WEI Li,LI Wenjing,et al.Daily long-term traffic flow forecasting based on a deep neural network[J].Expert Systems with Applications,2019,121:304-312. [7] LIU R R,HONG F,LU C,et al.Short-term traffic flow prediction based on deep circulation neural network[J].Journal of Physics:Conference Series,2019,1176(3):1-4. [8] WEI D.Network traffic prediction based on RBF neural network optimized by improved gravitation search algorithm[J].Neural Computing and Applications,2017,28(8):2303-2312. [9] MESA A,CASTROMAYOR K,GARILLOS-MANLIGUEZ C,et al.Cuckoo search via Levy flights applied to uncapacitated facility location problem[J].International Journal of Industrial Engineering,2018,14(3):585-592. [10] LAN Shaofeng,LIU Sheng.Overview of research on cuckoo search algorithm[J].Computer Engineering and Design,2015,36(4):1063-1067.(in Chinese)兰少峰,刘升.布谷鸟搜索算法研究综述[J].计算机工程与设计,2015,36(4):1063-1067. [11] TAWFIK A S,BADR A A,ABDEL-RAHMAN I F.One rank cuckoo search algorithm with application to algorithmic trading systems optimization[J].International Journal of Computer Applications,2013,64(6):30-37. [12] SUN Weipeng,MENG Bin,WU Xisheng.Improved clustering algorithm based on cuckoo search[J].Microelectronics and Computer,2018,35(8):16-20.(in Chinese)孙伟鹏,孟斌,吴锡生.基于布谷鸟搜索改进的聚类算法[J].微电子学与计算机,2018,35(8):16-20. [13] DING Zhenghao,LU Zhongrong,LIU Jike.Parameters identification of chaotic systems based on artificial bee colony algorithm combined with cuckoo search strategy[J].Science China(Technological Sciences),2018,61(3):417-426. [14] FU Wenyuan.Equilibrium single evolution based cuckoo search algorithm[J].Acta Electronica Sinica,2019,47(2):282-288.(in Chinese)傅文渊.均衡单进化布谷鸟算法[J].电子学报,2019,47(2):282-288. [15] PAN Hua,LIANG Zuofang,CHEN Wenchao,et al.Research on wind power peak shaving operation strategy of hydropower station based on cuckoo search algorithm[J].Water Resources and Hydropower Engineering,2019,50(3):207-211.(in Chinese)潘华,梁作放,陈文超,等.基于布谷鸟搜索算法的水电站消纳风电调峰运行策略研究[J].水利水电技术,2019,50(3):207-211. [16] ASIF R,MING Z.Hybrid artificial neural network and locally weighted regression models for lane-based short-term urban traffic flow forecasting[J].Transportation Planning and Technology,2018,41(8):15-26. [17] WAN Fang,LI Guangyu,JIA Ning,et al.Feature selection algorithm in short-time traffic flow prediction[J].Journal of Transportation Systems Engineering and Information Technology,2019,19(2):216-222,254.(in Chinese)万芳,黎光宇,贾宁,等.短时交通流预测中的特征选择算法研究[J].交通运输系统工程与信息,2019,19(2):216-222,254. [18] YOU Jinming,FANG Shouen,TANG Tang,et al.A support vector machine approach on real-time hazardous traffic state detection[J].Journal of Transportation Systems Engineering and Information Technology,2018,18(4):83-87,95.(in Chinese)游锦明,方守恩,唐棠,等.不良交通流状态实时监测支持向量机模型算法研究[J].交通运输系统工程与信息,2018,18(4):83-87,95. [19] XIA Zhuoqun,LUO Junpeng,HU Zhenzhen.Traffic state prediction for mobile crowdsensing networks based on CSA-SSVR[J].Computer Engineering and Science,2018,40(8):1482-1487.(in Chinese)夏卓群,罗君鹏,胡珍珍.移动感知环境下基于CSA-SSVR的交通状态预测方法[J].计算机工程与科学,2018,40(8):1482-1487. [20] LIU Shuying,FANG Zequn,ZHANG Li.Research on urban short-term traffic flow forecasting model[EB/OL].[2019-06-20].https://iopscience.iop.org/article/10.1088/1742-6596/1237/5/052026/pdf. |