[1] SHARMA A,CHAKI R,BHATTACHARYA U.Applications of wireless sensor network in intelligent traffic system:a review[C]//Proceedings of 2011 International Conference on Electronics Computer Technology.Washington D.C.,USA:IEEE Press,2011:53-57. [2] REN Q,MAN K L,LI M,et al.Using blockchain to enhance and optimize IoT-based intelligent traffic system[C]//Proceedings of 2019 International Conference on Platform Technology and Service.Washington D.C.,USA:IEEE Press,2019:1-4. [3] TANIMOTO J,AN X.Improvement of traffic flux with in-troduction of a new lane-change protocol supported by intelligent traffic system[J].Chaos Solitons & Fractals,2019,122:1-5. [4] 荣斌,武志昊,刘晓辉,等.基于时空多图卷积网络的交通站点流量预测[J].计算机工程,2020,46(5):26-33. RONG B,WU Z H,LIU X H,et al.Flow prediction of traffic stations based on spatio-temporal multi-graph convolutional network[J].Computer Engineering,2020, 46(5):26-33.(in Chinese) [5] CLEMENTE D,SOARES G,FERNANDES D,et al.Traffic forecast in mobile networks:classification system using machine learning[C]//Proceedings of the 90th IEEE Vehicular Technology Conference.Washington D.C.,USA:IEEE Press,2019:1-5. [6] EDES Y J S,MICHALOPOULOS P G,PLUM R A.Improved estimation of traffic flow for real-time control[EB/OL].[2020-06-05].http://onlinepubs.trb.org/Onlinepubs/trr/1981/795/795-006.pdf. [7] 冯宁,郭晟楠,宋超,等.面向交通流量预测的多组件时空图卷积网络[J].软件学报,2019,30(3):759-769. FENG N,GUO S N,SONG C,et al.Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J].Journal of Software,2019,30(3):759-769.(in Chinese) [8] ZHOU T,JIANG D,LIN Z,et al.Hybrid dual Kalman filtering model for short-term traffic flow forecasting[J].IET Intelligent Transport Systems,2019,13(6):1023-1032. [9] JI H,XU A,SUI X,et al.The applied research of Kalman in the dynamic travel time prediction[C]//Proceedings of the 18th International Conference on Geoinformatics.Washington D.C.,USA:IEEE Press,2010:1-5. [10] LIU H,TIAN H,LI Y.Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J].Applied Energy,2012,98:415-424. [11] ALGHAMDI T,ELGAZZAR K,BAYOUMI M,et al.Forecasting traffic congestion using ARIMA modeling[C]//Proceedings of the 15th International Wireless Communications & Mobile Computing Conference.Washington D.C.,USA:IEEE Press,2019:1227-1232. [12] LIU B,TANG X,CHENG J,et al.Traffic flow combination forecasting method based on improved LSTM and ARIMA[J].International Journal of Embedded Systems,2020,12(1):22-30. [13] WANG J,SHI Q.Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory[J].Transportation Research Part C:Emerging Technologies,2013,27:219-232. [14] PANG X,WANG C,HUANG G.A short-term traffic flow forecasting method based on a three-layer k-nearest neighbor non-parametric regression algorithm[J].Journal of Transportation Technologies,2016,6(4):200-206. [15] VAN LINT J W C,VAN HINSBERGEN C.Short-term traffic and travel time prediction models[J].Artificial Intelligence Applications to Critical Transportation Issues,2012,22(1):22-41. [16] 汪海燕,黎建辉,杨风雷.支持向量机理论及算法研究综述[J].计算机应用研究,2014,31(5):1281-1286. WANG H Y,LI J H,YANG F L.Overview of support vector machine analysis and algorithm[J].Application Research of Computers,2014,31(5):1281-1286.(in Chinese) [17] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [18] SHI X,CHEN Z,WANG H,et al.Convolutional LSTM network:a machine learning approach for precipitation nowcasting[EB/OL].[2020-06-05].http://de.arxiv.org/pdf/1506.04214. [19] YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[EB/OL].[2020-06-05].https://arxiv.org/pdf/1709.04875.pdf. [20] MOROZOV V,IARKOV S.The application of lane occupancy parameter for solving tasks of traffic management[J].Transportation Research Procedia,2018,36:520-526. [21] GUIN A,HUNTER M,GUENSLER R.Analysis of reduction in effective capacities of high-occupancy vehicle lanes related to traffic behavior[J].Transportation Research Record,2008,2065(1):47-53. [22] KOSCHI M,ALTHOFF M.Interaction-aware occupancy prediction of road vehicles[C]//Proceedings of the 20th IEEE International Conference on Intelligent Transportation Systems.Washington D.C.,USA:IEEE Press,2017:1-8. [23] TIAN R,BI J,ZHANG Q,et al.Research on lane occupancy rate forecasting based on the capsule network[J].IEEE Access,2020,8:38776-38785. [24] ZHENG C,FAN X,WANG C,et al.GMAN:a graph multi-attention network for traffic prediction[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press,2020:1234-1241. [25] LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:data-driven traffic forecasting[EB/OL].[2020-06-05].https://arxiv.org/pdf/1707.01926.pdf. [26] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2020-06-05].https://arxiv.org/pdf/1609.02907.pdf. |