[1] NAKAMOTO S.Bitcoin:a peer-to-peer electronic cashsystem[EB/OL].[2022-02-20].https://bitcoin.org/en/bitcoin-paper. [2] WOOD G.Ethereum:a secure decentralised generalised transaction ledger[EB/OL].[2022-02-20].http://gavwood.com/Paper.pdf. [3] LEE G.EOS technical white paper[EB/OL].[2022-02-20].https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md. [4] ANDROULAKI E, BARGER A, BORTNIKOV V, et al.Hyperledger fabric:a distributed operating system for permissioned blockchains[C]//Proceedings of EuroSys'18.Washington D.C., USA:IEEE Press, 2018:1-15. [5] WOOD G.Polkadot:vision for a heterogeneous multi-chain framework[EB/OL].[2022-02-20].https://polk-adot.network/Polkadot-lightpaper.pdf. [6] 张亮, 刘百祥, 张如意, 等.区块链技术综述[J].计算机工程, 2019, 45(5):1-12. ZHANG L, LIU B X, ZHANG R Y, et al.Overview of blockchain technology[J].Computer Engineering, 2019, 45(5):1-12.(in Chinese) [7] WAN C C, TANG S Y, ZHANG Y C, et al.Goshawk:a novel efficient, robust and flexible blockchain protocl[C]//Proceedings of the 15th International Conference on Information Security and Cryptology.Berlin, Germany:Springer, 2019:49-69. [8] WAN Z G, LIU W, CUI H.HIBEChain:a hierarchical identity-based blockchain system for large-scale IoT[EB/OL].[2022-02-20].https://dblp.uni-trier.de/rec/journals/iacr/WanLC19.html. [9] LERNER S D.DagCoin:a cryptocurrency without blocks[EB/OL].[2022-02-20].https://bitslog.com/2015/09/11/dagcoin/. [10] POPOV S.The tangle[EB/OL].[2022-02-20].https://www.doc88.com/p-0857889997312.html. [11] CHURYUMOV A.Byteball:a decentralized system for storage and transfer of value[EB/OL].[2022-02-20].https://byteball.org/Byteball.pdf. [12] NANO:digital money for the modern world[EB/OL].[2022-02-20].https://docs.nano.org/living-whitepaper. [13] LI C X, LI P L, ZHOU D, et al.Scaling Nakamoto consensus to thousands of transactions per second[EB/OL].[2022-02-20].https://arxiv.org/abs/1805.03870. [14] LI C, LI P, ZHOU D, et al.A decentralized blockchain with high throughput and fast confirmation[C]//Proceedings of 2020 USENIX Annual Technical Conference.[S.l.]:USENIX, 2020:515-528. [15] BAIRD L.Hashgraph consensus:fair, fast, byzantine fault tolerance[EB/OL].[2022-02-20].http://pages.cpsc.ucalgary.ca/~joel.reardon/blockchain/readings/hashgraph.pdf. [16] ŽIVIĆ N, KADUŠIĆ E, KADUŠIĆ K.Directed acyclic graph as Hashgraph:an alternative DLT to blockchains and tangles[C]//Proceedings of INFOTEH'20.Washington D.C., USA:IEEE Press, 2020:1-4. [17] ZHAO L R, YU J S.Evaluating DAG-based blockchains for IoT[C]//Proceedings of the 18th International Conference on Trust, Security and Privacy in Computing and Communications/the 13th IEEE International Conference on Big Data Science and Engineering.Washington D.C., USA:IEEE Press, 2019:507-513. [18] SOMPOLINSKY Y, LEWENBERG Y, ZOHAR A.SPECTRE:a fast and scalable cryptocurrency protocol[EB/OL].[2022-02-20].https://eprint.iacr.org/2016/1159.pdf. [19] HYCON whitepaper[EB/OL].[2022-02-20].http://hycon.io/images/HYCONWhitePaper_V1.3_en.pdf. [20] SOMPOLINSKY Y, ZOHAR A.PHANTOM:a scalable BlockDAG protocol[EB/OL].[2022-02-20].https://dblp.uni-trier.de/rec/journals/iacr/SompolinskyZ18.html. [21] SOMPOLINSKY Y, WYBORSKI S, ZOHAR A.PHANTOM and GHOSTDAG:a scalable generalization of Nakamoto consensus[C]//Proceedings of the 3rd ACM Conference on Advances in Financial Technologies.New York, USA:ACM Press, 2021:57-70. [22] LI J X, WU J G, CHEN L, et al.Blockchain-based secure key management for mobile edge computing[EB/OL].[2022-02-20].https://eprint.iacr.org/2018/104.pdf. [23] LI J X, WU J G, JIANG G Y, et al.Blockchain-based public auditing for big data in cloud storage[J].Information Processing & Management, 2020, 57(6):1-10. [24] BENČIĆ F M, ŽARKO I P.Distributed ledger technology:blockchain compared to directed acyclic graph[C]//Proceedings of the 38th International Conference on Distributed Computing Systems.Washington D.C., USA:IEEE Press, 2018:1569-1570. [25] CAO B, ZHANG Z H, FENG D Q, et al.Performance analysis and comparison of PoW, PoS and DAG based blockchains[J].Digital Communications and Networks, 2020, 6(4):480-485. [26] YEOW K, GANI A, AHMAD R, et al.Decentralized consensus for edge-centric Internet of Things:a review, taxonomy, and research issues[J].IEEE Access, 2017, 6:1513-1524. [27] 高政风, 郑继来, 汤舒扬, 等.基于DAG的分布式账本共识机制研究[J].软件学报, 2020, 31(4):1124-1142. GAO Z F, ZHENG J L, TANG S Y, et al.State-of-the-art survey of consensus mechanisms on DAG-based distributed ledger[J].Journal of Software, 2020, 31(4):1124-1142.(in Chinese) [28] LATHIF M R A, NASIRIFARD P, JACOBSEN H A.CIDDS:a configurable and distributed DAG-based distributed ledger simulation framework[C]//Proceedings of the 19th International Middleware Conference.Washington D.C., USA:IEEE Press, 2018:7-8. [29] ZANDER M, WAITE T, HARZ D.DAGsim[J].ACM SIGMETRICS Performance Evaluation Review, 2019, 46(3):118-121. [30] FAN C X, GHAEMI S, KHAZAEI H, et al.Performance analysis of the IOTA DAG-based distributed ledger[J].ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 2021, 6(3):10. [31] DONG Z L, ZHENG E, CHOON Y, et al.DAGBENCH:a performance evaluation framework for DAG distributed ledgers[C]//Proceedings of the 12th International Conference on Cloud Computing.Washington D.C., USA:IEEE Press, 2019:264-271. [32] WANG Q, YU J S, CHEN S P, et al.SoK:diving into DAG-based blockchain systems[EB/OL].[2022-02-20].https://arxiv.org/abs/2012.06128. [33] CAO B, HUANG S M, FENG D Q, et al.Impact of network load on direct acyclic graph based blockchain for Internet of Things[C]//Proceedings of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery.Washington D.C., USA:IEEE Press, 2019:215-218. [34] WANG T Y, WANG Q, SHEN Z Y, et al.Understanding intrinsic characteristics and system implications of DAG-based blockchain[C]//Proceedings of IEEE International Conference on Embedded Software and Systems.Washington D.C., USA:IEEE Press, 2020:1-6. [35] WANG T Y, WANG Q, SHEN Z Y, et al.Understanding characteristics and system implications of DAG-based blockchain in IoT environments[C]//Proceedings of ICESS'20.Washington D.C., USA:IEEE Press, 2020:1-6. [36] GHAEMI S.Analysis and design of open decentralized serverless computing platforms[D].Edmonton, Canada:University of Alberta, 2020. [37] KOTILEVETS I D, IVANOVA I A, ROMANOV I O, et al.Implementation of directed acyclic graph in blockchain network to improve security and speed of transactions[J].IFAC-PapersOnLine, 2018, 51(30):693-696. [38] WANG Q.Improving the scalability of blockchain through DAG[C]//Proceedings of the 20th International Middleware Doctoral Symposium.Washington D.C., USA:IEEE Press, 2019:34-35. [39] PARK S, OH S, KIM H.Performance analysis of DAG-based cryptocurrency[C]//Proceedings of 2019 IEEE International Conference on Communications Workshops.Washington D.C., USA:IEEE Press, 2019:1-6. [40] ZHOU T, LI X F, ZHAO H.DLattice:a permission-less blockchain based on DPoS-BA-DAG consensus for data tokenization[J].IEEE Access, 2019, 7:39273-39287. [41] ZHANG X D, LI R, HOU W H, et al.V-lattice:a lightweight blockchain architecture based on DAG-lattice structure for vehicular ad hoc networks[J].Security and Communication Networks, 2021, 2021:1-10. [42] WANG Q, WANG T Y, SHEN Z Y, et al.Re-Tangle:a ReRAM-based processing-in-memory architecture for transaction-based blockchain[C]//Proceedings of IEEE/ACM International Conference on Computer-Aided Design.Washington D.C., USA:IEEE Press, 2019:1-8. [43] FERRARO P, KING C, SHORTEN R.IOTA-based directed acyclic graphs without orphans[EB/OL].[2022-02-20].https://arxiv.org/abs/1901.07302. [44] FERRARO P, KING C, SHORTEN R.On the stability of unverified transactions in a DAG-based distributed ledger[J].IEEE Transactions on Automatic Control, 2020, 65(9):3772-3783. [45] SAAD A, PARK S Y.Decentralized directed acyclic graph based DLT network[C]//Proceedings of International Conference on Omni-Layer Intelligent Systems.Washington D.C., USA:IEEE Press, 2019:158-163. [46] DANEZIS G, HRYCYSZYN D.Blockmania:from block DAGs to consensus[EB/OL].[2022-02-20].https://arxiv.org/abs/1809.01620. [47] CHEN T Y, HUANG W N, KUO P C, et al.DEXON:a highly scalable, decentralized DAG-based consensus algorithm[EB/OL].[2022-02-20].https://arxiv.org/abs/1811.07525. [48] CHISHTI M S, BANERJEE A.Increasing TPS rate of state-based blockchains by parallel mining[J].Internet Technology Letters, 2021, 4(2):1-10. [49] KAN J, CHEN S Z, HUANG X.Improve blockchain performance using graph data structure and parallel mining[EB/OL].[2022-02-20].https://arxiv.org/abs/1808.10810. [50] LEWENBERG Y, SOMPOLINSKY Y, ZOHAR A.Inclusive block chain protocols[C]//Proceedings of International Conference on Financial Cryptography and Data Security.Berlin, Germany:Springer, 2015:528-547. [51] GUPTA H, JANAKIRAM D.CDAG:a serialized blockDAG for permissioned blockchain[EB/OL].[2022-02-20].https://arxiv.org/abs/1910.08547. [52] ROCKET T.Snowflake to avalanche:a novel metastable consensus protocol family for cryptocurrencies[EB/OL].[2022-02-20].http://knowen-production.s3.amazonaws.com/uploads/attachment/file/1922/Snowflake%2Bto%2BAvalanche%2B-%2BA%2BNovel%2BMetastable%2BConsensus%2BProtocol%2BFamily.pdf. [53] Perlin:scalable DAG-based distributed ledger protocolusing avalanche consensus[EB/OL].[2022-02-20].https://drive.google.com/file/d/1vfj1j2OTase4mkj8fj9BmbtUFYgYjwg4/view. [54] FU X, WANG H M, SHI P C, et al.Jointgraph:a DAG-based efficient consensus algorithm for consortium blockchains[J].Software:Practice and Experience, 2021, 51(10):1987-1999. [55] WANG B Z, WANG Q, CHEN S P, et al.Security analysis on Tangle-based blockchain through simulation[C]//Proceedings of International Conference on Information Security and Privacy.Berlin, Germany:Springer, 2020:653-663. [56] CULLEN A, FERRARO P, KING C, et al.On the resilience of DAG-based distributed ledgers in IoT applications[J].IEEE Internet of Things Journal, 2020, 7(8):7112-7122. [57] LI Y X, CAO B, PENG M G, et al.Direct acyclic graph-based ledger for Internet of Things:performance and security analysis[J].IEEE/ACM Transactions on Networking, 2020, 28(4):1643-1656. [58] PERVEZ H, MUNEEB M, IRFAN M U, et al.A comparative analysis of DAG-based blockchain architectures[C]//Proceedings of the 12th International Conference on Open Source Systems and Technologies.Washington D.C., USA:IEEE Press, 2018:27-34. [59] CUI L Z, YANG S, CHEN Z T, et al.An efficient and compacted DAG-based blockchain protocol for industrial Internet of Things[J].IEEE Transactions on Industrial Informatics, 2020, 16(6):4134-4145. [60] HELLANI H, SLIMAN L, SAMHAT A E, et al.Computing resource allocation scheme for DAG-based IOTA nodes[J].Sensors(Basel, Switzerland), 2021, 21(14):4703. [61] SON B, LEE J, JANG H.A scalable IoT protocol via an efficient DAG-based distributed ledger consensus[J].Sustainability, 2020, 12(4):1529. [62] NGUYEN Q, CRONJE A, KONG M, et al.StairDag:cross-DAG validation for scalable BFT consensus[EB/OL].[2022-02-20].https://arxiv.org/abs/1908.11810. [63] 张震, 李强, 甘俊, 等.基于DAG的区块链新模型设计与实现[J].计算机应用与软件, 2021, 38(10):114-124. ZHANG Z, LI Q, GAN J, et al.Design and implementation of a new blockchain model based on DAG[J].Computer Applications and Software, 2021, 38(10):114-124.(in Chinese) [64] NILSSON A, BONANDER C, STRÖMBERG U, et al.A directed acyclic graph for interactions[J].International Journal of Epidemiology, 2021, 50(2):613-619. [65] ZHANG Z Y, VASAVADA V, MA X Y, et al.DLedger:an IoT-friendly private distributed ledger system based on DAG[EB/OL].[2022-02-20].https://arxiv.org/pdf/1902.09031.pdf. [66] SCHETT M A, DANEZIS G.Embedding a deterministic BFT protocol in a block DAG[C]//Proceedings of 2021 ACM Symposium on Principles of Distributed Computing.New York, USA:ACM Press, 2021:177-186. [67] DU M, WANG K, LIU Y Q, et al.Spacechain:a three-dimensional blockchain architecture for IoT security[J].IEEE Wireless Communications, 2020, 27(3):38-45. [68] WATANABE H, ISHIDA T, OHASHI S, et al.Enhancing blockchain traceability with DAG-based tokens[C]//Proceedings of IEEE International Conference on Blockchain.Washington D.C., USA:IEEE Press, 2019:220-227. [69] YANG W H, DAI X H, XIAO J, et al.LDV:a lightweight DAG-based blockchain for vehicular social networks[J].IEEE Transactions on Vehicular Technology, 2020, 69(6):5749-5759. [70] FU X, WANG H M, SHI P C, et al.Teegraph:trusted execution environment and directed acyclic graph-based consensus algorithm for IoT blockchains[J].Science China Information Sciences, 2021, 65(3):1-3. [71] WANG B Y, DABBAGHJAMANESH M, KAVOUSI-FARD A, et al.Cybersecurity enhancement of power trading within the networked microgrids based on blockchain and directed acyclic graph approach[J].IEEE Transactions on Industry Applications, 2019, 55(6):7300-7309. [72] SHAFEEQ S, ZEADALLY S, ALAM M, et al.Curbing address reuse in the IOTA distributed ledger:a cuckoo-filter-based approach[J].IEEE Transactions on Engineering Management, 2020, 67(4):1244-1255. [73] WANG T Y, ZHU W B, MA Q, et al.ABACUS:address-partitioned bloom filter on address checking for UniquenesS in IoT blockchain[C]//Proceedings of IEEE/ACM International Conference on Computer Aided Design.Washington D.C., USA:IEEE Press, 2020:1-7. [74] ZHU W B, MA Q, SHEN Z Y, et al.HF-BF:a hotness-aware fine-grained bloom filter for unique address checking in IoT blockchain[C]//Proceedings of HPCC/SmartCity/DSS.Washington D.C., USA:IEEE Press, 2020:1015-1020. [75] MAKHDOOM I, ABOLHASAN M, ABBAS H, et al.Blockchain's adoption in IoT:the challenges, and a way forward[J].Journal of Network and Computer Applications, 2019, 125:251-279. [76] RADHAKRISHNAN R, KRISHNAMACHARI B.Streaming Data Payment Protocol(SDPP) for the Internet of Things[C]//Proceedings of IEEE International Conference on Internet of Things(iThings) and IEEE Green Computing and Communications(GreenCom) and IEEE Cyber, Physical and Social Computing(CPSCom) and IEEE Smart Data.Washington D.C., USA:IEEE Press, 2018:1679-1684. [77] PARK S, KIM H.DAG-based distributed ledger for low-latency smart grid network[J].Energies, 2019, 12(18):1-22. [78] ZHANG H W, LENG S P, WU F, et al.A DAG blockchain enhanced user-autonomy spectrum sharing framework for 6G-enabled IoT[EB/OL].[2022-02-20].https://ieeexplore.ieee.org/abstract/document/9528845. [79] GAO Y, LIU Y L, WEN Q S, et al.Secure drone network edge service architecture guaranteed by DAG-based blockchain for flying automation under 5G[J].Sensors(Basel, Switzerland), 2020, 20(21):6209. [80] BHANDARY M, PARMAR M, AMBAWADE D.A blockchain solution based on directed acyclic graph for IoT data security using IoTA Tangle[C]//Proceedings of the 5th International Conference on Communication and Electronics Systems.Washington D.C., USA:IEEE Press, 2020:827-832. [81] JIANG Y M, WANG C X, WANG Y W, et al.A cross-chain solution to integrating multiple blockchains for IoT data management[J].Sensors (Basel, Switzerland), 2019, 19(9):2042. [82] LIN Y P, MUKHTAR H, HUANG K T, et al.Real-time identification of irrigation water pollution sources and pathways with a wireless sensor network and blockchain framework[J].Sensors (Basel, Switzerland), 2020, 20(13):3634. [83] HUANG J Q, KONG L H, CHEN G H, et al.Towards secure industrial IoT:blockchain system with credit-based consensus mechanism[J].IEEE Transactions on Industrial Informatics, 2019, 15(6):3680-3689. [84] KARLSSON K, JIANG W T, WICKER S, et al.Vegvisir:a partition-tolerant blockchain for the Internet-of-Things[C]//Proceedings of the 38th International Conference on Distributed Computing Systems.Washington D.C., USA:IEEE Press, 2018:1150-1158. [85] CHEN W Y, YANG X, ZHANG H K, et al.Big data architecture for scalable and trustful DNS based on sharded DAG blockchain[J].Journal of Signal Processing Systems, 2021, 93(7):753-768. [86] BEILHARZ J, PFITZNER B, SCHMID R, et al.Implicit model specialization through dag-based decentralized federated learning[EB/OL].[2022-02-20].https://arxiv.org/abs/2111.01257. [87] CAO M R, CAO B, HONG W, et al.DAG-FL:direct acyclic graph-based blockchain empowers on-device federated learning[C]//Proceedings of IEEE International Conference on Communications.Washington D.C., USA:IEEE Press, 2021:1-6. [88] CAO M, ZHANG L, CAO B.Toward on-device federated learning:a direct acyclic graph-based blockchain approach[EB/OL].[2022-02-20].https://arxiv.org/abs/2104.3092. [89] HUANG J Q, KONG L H, CHEN G H, et al.B-IoT:blockchain driven Internet of Things with credit-based consensus mechanism[C]//Proceedings of the 39th International Conference on Distributed Computing Systems.Washington D.C., USA:IEEE Press, 2019:1348-1357. [90] JAVAD A M, DIVYAKANT A, EL A A.CAPER:a cross-application permissioned blockchain[J].Proceedings of the VLDB Endowment, 2019, 12(11):1385-1398. [91] NGUYEN Q, CRONJE A, KONG M, et al.StakeDag:stake-based consensus for scalable trustless systems[EB/OL].[2022-02-20].https://arxiv.org/abs/1907.03655. [92] KHAN M A, SALAH K.IoT security:Review, blockchain solutions, and open challenges[J].Future Generation Computer Systems, 2018, 82:395-411. [93] FAN C.Performance analysis and design of an IoT-friendly DAG-based distributed ledger system[D].Edmonton, Canada:University of Alberta, 2019. [94] FAN C X, KHAZAEI H, CHEN Y X, et al.Towards a scalable DAG-based distributed ledger for smart communities[C]//Proceedings of the 5th World Forum on Internet of Things.Washington D.C., USA:IEEE Press, 2019:177-182. [95] GUO J X, DING X J, WU W L.A double auction for charging scheduling among vehicles using DAG-blockchains[EB/OL].[2022-02-20].https://arxiv.org/abs/2010.01436v1. |