[1] GRAU V, ALCAÑIZ M, JUAN M C, et al.Automatic localization of cephalometric landmarks[J].Journal of Biomedical Informatics, 2001, 34(3):146-156. [2] KEUSTERMANS J, MOLLEMANS W, VANDERMEULEN D, et al.Automated cephalometric landmark identification using shape and local appearance models[C]//Proceedings of the 20th International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2010:2464-2467. [3] IBRAGIMOV B, LIKAR B, PERNUS F, et al.Computerized cephalometry by game theory withshape- and appearance-based landmark refinement[C]//Proceedings of International Symposium on Biomedical imaging.Washington D.C., USA:IEEE Press, 2015:26-35. [4] OKTAY O, BAI W J, GUERRERO R, et al.Stratified decision forests for accurate anatomical landmark localization in cardiac images[J].IEEE Transactions on Medical Imaging, 2017, 36(1):332-342. [5] CRIMINISI A, SHOTTON J, BUCCIARELLI S.Decision forests with long-range spatial context for organlocalization in CT volumes[EB/OL].[2022-02-10].https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Criminisi_MICCAI_PMMIA_2009_.pdf. [6] LINDNER C, COOTES T F.Fully automatic cephalometric evaluation using random forest regressionvoting[EB/OL].[2022-02-10].https://www.researchgate.net/publication/287608380_Fully_Automatic_Cephalometric_Evaluation_using_Random_Forest_Regression-Voting. [7] 杨涵方, 周向东.基于深度稀疏辨别的跨领域图像分类[J].计算机工程, 2018, 44(4):310-316. YANG H F, ZHOU X D.Cross domain image classification based on deep sparse discrimination[J].Computer Engineering, 2018, 44(4):310-316.(in Chinese) [8] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:3431-3440. [9] ZHAO Z Q, ZHENG P, XU S T, et al.Object detection with deep learning:a review[J].IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11):3212-3232. [10] LEE H S, PARK M, KIM J.Cephalometric landmark detection in dental X-ray images using convolutional neural networks[EB/OL].[2022-02-10].https://www.researchgate.net/publication/314221440_Cephalometric_land mark_detection_in_dental_x-ray_images_using_convolu tional_neural_networks. [11] AUBERT B, VAZQUEZ C, CRESSON T, et al.Automatic spine and pelvis detection in frontal X-rays using deep neural networks for patch displacement learning[C]//Proceedings of the 13th International Symposium on Biomedical Imaging.Washington D.C., USA:IEEE Press, 2016:1426-1429. [12] ARIK S, IBRAGIMOV B, XING L.Fully automated quantitative cephalometry using convolutional neural networks[J].Journal of Medical Imaging, 2017, 4(1):14501-14510. [13] PAYER C, ŠTERN D, BISCHOF H, et al.Regressing heatmaps for multiple landmark localization using CNNs[M]//OURSELIN S, JOSKOWICZ L, SABUNCU M R, et al.Medical Image Computing and Computer-Assisted Intervention-MICCAI.Berlin, Germany:Springer, 2016:230-238. [14] ZHONG Z S, LI J, ZHANG Z X, et al.An attention-guided deep regression model for landmark detection in cephalograms[M]//SHEN D G, LIU T M, PETERS T M, et al.Lecture Notes in Computer Science.Berlin, Germany:Springer, 2019:540-548. [15] 齐国强, 姚剑敏, 胡海龙, 等.引入多尺度特征图融合的人脸关键点检测网络[J].计算机应用研究, 2020, 37(12):3825-3829. QI G Q, YAO J M, HU H L, et al.Facial landmark detection network with multi-scale feature map fusion[J].Application Research of Computers, 2020, 37(12):3825-3829.(in Chinese) [16] 张凡.基于轻量化多尺度特征融合与注意力机制的交通标志检测与识别[D].西安:长安大学, 2021. ZHANG F.Traffic sign detection and recognition based on lightweight multi-scale feature fusion and attention mechanism[D].Xi'an:Changan University, 2021.(in Chinese) [17] 李赛, 黎浩江, 刘立志, 等.基于尺度注意力沙漏网络的头部MRI解剖点自动定位[J].光学精密工程, 2021, 29(9):2278-2286. LI S, LI H J, LIU L Z, et al.Automatic location of anatomical points in head MRI based on the scale attention hourglass network[J].Optics and Precision Engineering, 2021, 29(9):2278-2286.(in Chinese) [18] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [19] MILLETARI F, NAVAB N, AHMADI S A.V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision.Washington D.C., USA:IEEE Press, 2016:565-571. [20] TAN M X, PANG R M, LE Q V.EfficientDet:scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:10778-10787. [21] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944 [22] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8759-8768. [23] SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4510-4520. [24] OH K, OH I S, LE V N T, et al.Deep anatomical context feature learning for cephalometric landmark detection[J].IEEE Journal of Biomedical and Health Informatics, 2021, 25(3):806-817. [25] SUN K, XIAO B, LIU D, et al.Deep high-resolution representation learning for human pose estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:5686-5696. [26] NEWELL A, YANG K Y, DENG J.Stacked hourglass networks for human pose estimation[EB/OL].[2022-02-10] https://link.springer.com/content/pdf/10.1007/978-3-319-46484-8_29.pdf. [27] HE K M, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2980-2988. [28] UPSCHULTE E, HARMELING S, AMUNTS K, et al.Contour proposal networks for biomedical instance segmentation[EB/OL].[2022-02-10].https://arxiv.org/abs/2104.03393. |