1 |
胡露, 郑德义, 李伟人. 皮肤恶性黑色素瘤的外科治疗进展. 医学综述, 2022, 28(9): 1695- 1700.
URL
|
|
HU L, ZHENG D Y, LI W R. Advances in surgical treatment of cutaneous malignant melanoma. Medical Recapitulate, 2022, 28(9): 1695- 1700.
URL
|
2 |
XIMENES V, FRANCISCO F, MEDEIROS A G, et al. Automatic skin lesions segmentation based on a new morphological approach via geodesic active contour. Cognitive Systems Research, 2019, 55, 44- 59.
doi: 10.1016/j.cogsys.2018.12.008
|
3 |
CELEBI M E, WEN Q A, HWANG S, et al. Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Research and Technology, 2013, 19(1): 252- 258.
|
4 |
WONG A, SCHARCANSKI J, FIEGUTH P. Automatic skin lesion segmentation via iterative stochastic region merging. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(6): 929- 936.
doi: 10.1109/TITB.2011.2157829
|
5 |
ZHOU H Y, SCHAEFER G, SADKA A H, et al. Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(1): 26- 34.
doi: 10.1109/JSTSP.2008.2010631
|
6 |
IMTIAZ I, AHMED I, JEON G, et al. An efficient image processing and machine learning based technique for skin lesion segmentation and classification[C]//Proceedings of 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Washington D. C., USA: IEEE Press, 2021: 1499-1505.
|
7 |
ATTIA M, HOSSNY M, NAHAVANDI S, et al. Skin melanoma segmentation using recurrent and convolutional neural networks[C]//Proceedings of the 14th International Symposium on Biomedical Imaging. Washington D. C., USA: IEEE Press, 2017: 292-296.
|
8 |
LONG J, SHELHAMER E, DARRELL T, et al. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
9 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
10 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
11 |
王雪. 基于U-Net多尺度和多维度特征融合的皮肤病变分割方法. 吉林大学学报(理学版), 2021, 59(1): 123- 127.
URL
|
|
WANG X. Skin lesion segmentation method based on U-Net with multi-scale and multi-dimensional feature fusion. Journal of Jilin University(Science Edition), 2021, 59(1): 123- 127.
URL
|
12 |
HUSSAIN R, BASAK H. RecU-Net: improved utilization of receptive fields in U-Net for skin lesion segmentation[C]//Proceedings of the 18th India Council International Conference. Washington D. C., USA: IEEE Press, 2022: 1-6.
|
13 |
RAJINIKANTH V, KADRY S, DAMAŠEVIČIUS R, et al. Skin melanoma segmentation using VGG-UNet with Adam/SGD optimizer: a study[C]//Proceedings of the 3rd International Conference on Intelligent Computing Instrumentation and Control Technologies. Washington D. C., USA: IEEE Press, 2022: 982-986.
|
14 |
NINH Q C, TRAN T T, TRAN T T, et al. Skin lesion segmentation based on modification of SegNet neural networks[C]//Proceedings of the 6th NAFOSTED Conference on Information and Computer Science. Washington D. C., USA: IEEE Press, 2020: 575-578.
|
15 |
|
16 |
WU H S, PAN J Q, LI Z Y, et al. Automated skin lesion segmentation via an adaptive dual attention module. IEEE Transactions on Medical Imaging, 2021, 40(1): 357- 370.
doi: 10.1109/TMI.2020.3027341
|
17 |
AGHDAM E K, AZAD R, ZARVANI M, et al. Attention Swin U-Net: cross-contextual attention mechanism for skin lesion segmentation[EB/OL]. [2022-09-10]. https://arxiv.org/abs/2210.16898.
|
18 |
齐永锋, 侯璐璐, 段友放. 基于DenseNet-BC网络的皮肤镜下皮肤损伤分割. 计算机工程与科学, 2020, 42(6): 1060- 1067.
URL
|
|
QI Y F, HOU L L, DUAN Y F. Dermatological skin lesion segmentation based on DenseNet-BC network. Computer Engineering and Science, 2020, 42(6): 1060- 1067.
URL
|
19 |
YAO Y K, ZHANG Y C, YAO X K, et al. Image segmentation of skin lesions based on attention mechanism and deep convolutional neural network[C]//Proceedings of International Conference on Intelligent Transportation, Big Data and Smart City. Washington D. C., USA: IEEE Press, 2021: 659-662.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
21 |
ZHANG Z L, ZHANG X Y, PENG C, et al. ExFuse: enhancing feature fusion for semantic segmentation[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 273-288.
|
22 |
CHEN W Y, JIANG Z Y, WANG Z Y, et al. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 8916-8925.
|
23 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 936-944.
|
24 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2999-3007.
|
25 |
|
26 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6230-6239.
|