作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (11): 267-274. doi: 10.19678/j.issn.1000-3428.0066329

• 图形图像处理 • 上一篇    下一篇

高分辨率皮肤黑色素瘤图像的两阶段式分割算法

贵向泉, 张馨月*, 李立   

  1. 兰州理工大学 计算机与通信学院, 兰州 730050
  • 收稿日期:2022-11-22 出版日期:2023-11-15 发布日期:2023-03-10
  • 通讯作者: 张馨月
  • 作者简介:

    贵向泉(1981—),男,副教授、博士,主研方向为云计算、大数据分析、复杂网络

    李立,讲师、硕士

  • 基金资助:
    国家重点研发计划(2020YFB1713600)

Two-Stage Segmentation Algorithm of High Resolution Skin Melanoma Image

Xiangquan GUI, Xinyue ZHANG*, Li LI   

  1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2022-11-22 Online:2023-11-15 Published:2023-03-10
  • Contact: Xinyue ZHANG

摘要:

皮肤黑色素瘤切片图像分辨率过大且病理特征表现形式多样,现有很多分割算法结果不精准同时消耗巨大显卡内存。针对该问题,提出一种低显存消耗的两阶段式精细分割算法。该算法第一阶段采用全局分割网络对以ResNet50为骨干的特征金字塔结构进行改进,图像特征提取过程中使用全局金字塔平均池化模块增强图像全局语义信息的提取,并采用多尺度特征融合分支将高层特征图的语义信息融入到低层特征图中,增强低层特征图语义信息的表征能力。第二阶段采用一种全局到局部的精细分割策略,以全局分割结果为基准对图像进行剪裁,得到一个较小的候选区域,将其输入到局部分割网络中,局部分割网络仅处理候选区域内的像素并与全局网络对应层共享图像特征,精细分割结果的同时减少显存的消耗。在经典数据集ISIC2018上的实验结果显示,该算法的准确度和IOU分别达到93.5%和82.1%,相较于对比的经典分割算法精度最高且占用的显卡内存减少了22.8%~36.9%,能有效适用于高分辨率皮肤病灶图像的分割任务。

关键词: 两阶段式分割, ResNet50, 特征金字塔结构, 全局金字塔平均池化模块, 多尺度特征融合分支

Abstract:

Skin melanoma imaging faces a few challengesthe required resolution is often large, the pathological features of skin melanoma are diverse, and many segmentation algorithms are not sufficiently accurate and require huge amounts of GPU memory. Aiming at this problem, this paper proposes a low GPU memory consumption algorithm based on two-stage fine segmentation. The global segmentation network adopted in the first stage of the algorithm improves the feature pyramid structure with ResNet50 as the backbone. During image feature extraction, the Global Pyramid Average Pooling Module(GPAPM)is used to enhance the extraction of image global semantic information. The multi-scale feature fusion branch is adopted to integrate the semantic information of the high-level feature map into the lower-level feature map to enhance the representation ability of the semantic information of the low-level feature map. In the second stage, a global to local fine segmentation strategy is adopted. The image is clipped based on the global segmentation results to reduce the candidate area, and the image is then input into the local segmentation network. The local segmentation network only processes pixels in the candidate region and shares image features with the corresponding layer of the global network. The GPU memory consumption is minimized while the segmentation results are improved. The algorithm is verified on the classic dataset ISIC2018. The experimental results show that the accuracy and IOU of the algorithm reach 93.5% and 82.1%, respectively, and compared with other classical segmentation algorithms, the algorithm has the highest accuracy and reduces the GPU memory by 22.8% to 36.9%, indicating its effective applicability to the segmentation of high resolution skin melanoma images.

Key words: two-stage segmentation, ResNet50, feature pyramid structure, Global Pyramid Average Pooling Module(GPAPM), multi-scale feature fusion branch